1000 resultados para alternating temperatures


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The frequency-dependent dielectric relaxation of Pb0.94Sr0.06](Mn1/3Sb2/3)(0.05)(Zr0.52Ti0.48)(0.95)]O-3 ceramics, synthesized in pure perovskite phase by a solid-state reaction technique is investigated in the temperature range from 303 to 773 K by alternating-current impedance spectroscopy. Using Cole-Cole model, an analysis of the imaginary part of the dielectric permittivity with frequency is performed assuming a distribution of relaxation times. The scaling behavior of the imaginary part of the electric modulus suggests that the relaxation describes the same mechanism at various temperatures. The variation of dielectric constant with temperature is explained considering the space-charge polarization. The SEM indicates that the sample has single phase with an average grain size similar to 14.2 mu m. The material exhibits tetragonal structure. A detailed temperature dependent dielectric study at various frequencies has also been performed. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of polyesters based on 2-propargyl-1,3-propanediol or 2,2-dipropargyl-1,3-propanediol or 2-allyl-2-propargyl-1,3-propanediol and 1,20-eicosanedioic acid were prepared by solution polycondensation using the corresponding diacid chloride; these polyesters were quantitatively ``clicked'' with a fluoroalkyl, azide, namely CF3(CF2)(7)CH2CH2N3, to yield polyesters carrying long-chain alkylene segments in the backbone and either one or two perfluoroalkyl segments located at periodic intervals along the polymer chain. The immiscibility of the alkylene and fluoroalkyl segments causes the polymer chains to fold in a zigzag fashion to facilitate the segregation of these segments; the folded chains further organize in the solid state to form a lamellar structure with alternating domains of alkyl (HC) and fluoroalkyl (FC) segments. Evidence for the self-segregation is provided by DSC, SAXS, WAXS, and TEM studies; in two of the samples, the DSC thermograms showed two distinct endotherms associated with the melting of the individual domains, while the WAXS patterns confirm the existence of two separate peaks corresponding to the interchain distances within the crystalline lattices of the HC and FC domains. SAXS data, on the other hand, reveal the formation of an extended lamellar morphology with an interlamellar spacing that matches reasonably well with those estimated from TEM studies. Interestingly, a smectic-type liquid crystalline phase is observed at temperatures between the two melting transitions. These systems present a unique opportunity to develop interesting nanostructured polymeric materials with precise control over both the domain size and morphology; importantly, the domain sizes are far smaller than those typically observed in traditional block copolymers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structural Support Vector Machines (SSVMs) and Conditional Random Fields (CRFs) are popular discriminative methods used for classifying structured and complex objects like parse trees, image segments and part-of-speech tags. The datasets involved are very large dimensional, and the models designed using typical training algorithms for SSVMs and CRFs are non-sparse. This non-sparse nature of models results in slow inference. Thus, there is a need to devise new algorithms for sparse SSVM and CRF classifier design. Use of elastic net and L1-regularizer has already been explored for solving primal CRF and SSVM problems, respectively, to design sparse classifiers. In this work, we focus on dual elastic net regularized SSVM and CRF. By exploiting the weakly coupled structure of these convex programming problems, we propose a new sequential alternating proximal (SAP) algorithm to solve these dual problems. This algorithm works by sequentially visiting each training set example and solving a simple subproblem restricted to a small subset of variables associated with that example. Numerical experiments on various benchmark sequence labeling datasets demonstrate that the proposed algorithm scales well. Further, the classifiers designed are sparser than those designed by solving the respective primal problems and demonstrate comparable generalization performance. Thus, the proposed SAP algorithm is a useful alternative for sparse SSVM and CRF classifier design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low cycle fatigue behavior of an O+B2 alloy was evaluated at 650 degrees C in ambient atmosphere under fully reversed total axial strain controlled mode. Three different microstructures, namely equiaxed O plus aged B2 (fine O plates in B2 matrix), lenticular O laths plus aged B2 and a pancake composite microstructure comprising equiaxed alpha 2, lenticular O and aged B2, were selected to study the effect of microstructure on low cycle fatigue behavior in this class of alloys. Distinct well-defined trends were observed in the cyclic stress-strain response curves depending on the microstructure. The cyclic stress response was examined in terms of softening or hardening and correlated with microstructural features and dislocation behavior. Fatigue life was analyzed in terms of standard Coffin-Manson and Basquin plots and for all microstructures a prevailing elastic strain regime was identified, with a single slope for microstructures equiaxed and composite and a double slope for lenticular O laths. (c) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, a combined forming and fracture limit diagram, fractured void coalescence and texture analysis have been experimentally evaluated for the commercially available aluminum alloy Al 8011 sheet annealed at different temperatures viz. 200 degrees C, 250 degrees C, 300 degrees C and 350 degrees C. The sheets were examined at different annealing temperatures on microstructure, tensile properties, formability and void coalescence. The fractured surfaces of the formed samples were examined using scanning electron microscope (SEM) and these images were correlated with fracture behavior and formability of sheet metals. Formability of Al 8011 was studied and examined at various annealing temperatures using their bulk X-ray crystallographic textures and ODF plots. Forming limit diagrams, void coalescence parameters and crystallographic textures were correlated with normal anisotropy of the sheet metals annealed at different temperatures. (C) 2013 Politechnika Wroclawska. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A variety of aliphatic and aromatic ketoaldehydes were reduced to the corresponding ketoalcohols with a mixture of sodium borohydride (1.2 equivalents) and sodium carbonate (sixfold molar excess) in water. Reactions were performed at room temperatures over (typically) 2 h, and yields of isolated products generally ranged from 70% to 85%. A biscarbonate-borane complex, (BH3)(2)CO2](2-) 2Na(+), possibly formed from the reagent mixture, is likely the active reductant. The moderated reactivity of this acylborane species would explain the chemoselectivity observed in the reactions. The readily available reagents and the mild aqueous conditions make for ease of operation and environmental compatibility, and make a useful addition to available methodology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study Heisenberg spin-1/2 and spin-1 chains with alternating ferromagnetic (J(1)(F)) and antiferromagnetic (J(1)(A)) nearest-neighbor interactions and a ferromagnetic next-nearest-neighbor interaction (J(2)(F)). In this model frustration is present due to the non-zero J(2)(F). The model with site spin s behaves like a Haldane spin chain, with site spin 2s in the limit of vanishing J(2)(F) and large J(1)(F)/J(1)(A). We show that the exact ground state of the model can be found along a line in the parameter space. For fixed J(1)(F), the phase diagram in the space of J(1)(A)-J(2)(F) is determined using numerical techniques complemented by analytical calculations. A number of quantities, including the structure factor, energy gap, entanglement entropy and zero temperature magnetization, are studied to understand the complete phase diagram. An interesting and potentially important feature of this model is that it can exhibit a macroscopic magnetization jump in the presence of a magnetic field; we study this using an effective Hamiltonian.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plastic deformation and strength of Ti-6Al-4V (Ti64) alloyed with minor additions of B at cryogenic temperatures were investigated through unnotched and notched tensile tests at 20 and 77 K Marked microstructural refinement that occurs with the trace addition of B to Ti64 was exploited for examining the role of microstructural length scales on the cryogenic plastic deformation. The tensile tests were complemented with detailed microstructural characterisation using transmission electron microscopy and electron back scattered diffraction imaging of the deformed specimens. Experimental results show that the addition of 0.30 wt% and above of B to Ti64 reduces ductility, and in turn enhances the notch sensitivity to the extent that those alloys become unsuitable for low temperature applications. However, the addition of similar to 0.10 wt% B is beneficial in enhancing the low temperature strength. An examination of the yield strength variation at various temperatures reveals that at 77 K, the colony size determines the yield strength of the alloy, just as it does at room temperature; implying dislocation-mediated plasticity continues to dominate up to 77 K At 20 K however, twinning dominates the flow response, with the activation of {11 (2) over bar1} and {5 (6) over bar1 (3) over bar} twinning in addition to {10 (1) over bar2} in the base alloy resulting in enhanced ductility of it as compared to either B-modified alloys at 20 K or the base alloy itself at 77 K The observation of a reasonable correlation between the lath aspect ratio, given by the colony-to-lath thickness ratios, and yield strength variation at 20 K suggests that coarse colony size in the base alloy allows for the activation of additional twinning mechanisms. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular dynamics simulations of bilayers in a surfactant/co-surfactant/water system with explicit solvent molecules show formation of topologically distinct gel phases depending upon the bilayer composition. At low temperatures, the bilayers transform from the tilted gel phase, L beta', to the one dimensional (1D) rippled, P beta' phase as the surfactant concentration is increased. More interestingly, we observe a two dimensional (2D) square phase at higher surfactant concentration which, upon heating, transforms to the gel L beta' phase. The thickness modulations in the 1D rippled and square phases are asymmetric in two surfactant leaflets and the bilayer thickness varies by a factor of similar to 2 between maximum and minimum. The 1D ripple consists of a thinner interdigitated region of smaller extent alternating with a thicker non-interdigitated region. The 2D ripple phase is made up of two superimposed square lattices of maximum and minimum thicknesses with molecules of high tilt forming a square lattice translated from the lattice formed with the thickness minima. Using Voronoi diagrams we analyze the intricate interplay between the area-per-head-group, height modulations and chain tilt for the different ripple symmetries. Our simulations indicate that composition plays an important role in controlling the formation of low temperature gel phase symmetries and rippling accommodates the increased area-per-head-group of the surfactant molecules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The growth rate of high-speed mixing layer between two dissimilar gases is explored through the model free simulation results. To analyse the cause for the higher mixing layer growth rate in comparison to the existing values reported in literature, the results were compared with the model free simulations of mixing of two high-speed streams of nitrogen (similar gas) at matched temperature and density. The analysis indicates that pressure and density fluctuations no longer remain correlated completely for the mixing layer formed between two dissimilar gases at different temperatures in contrast to the complete pressure density correlation for similar gases. It has been observed that the correlation between temperature and density fluctuations is near -1.0 for dissimilar gases in the mixing layer region and is much higher than for similar gases. It is concluded that mixing layer of similar gases shows a decrease in growth rate due to compressibility effect, while that of dissimilar gases shows a decrease due to dominant temperature effect on density.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fire and soil temperatures were measured during controlled burns conducted by the Forest Department at two seasonally dry tropical forest sites in southern India, and their relationships with fuel load, fuel moisture and weather variables assessed using stepwise regression. Fire temperatures at the ground level varied between 79 degrees C and 760 degrees C, with higher temperatures recorded at high fuel loads and ambient temperatures, whereas lower temperatures were recorded at high relative humidity. Fire temperatures did not vary with fuel moisture or wind speed. Soil temperatures varied between <79 degrees C and 302 degrees C and were positively correlated with ground-level fire temperatures. Results from the study imply that fuel loads in forested areas have to be reduced to ensure low intensity fires in the dry season. Low fire temperatures would ensure lower mortality of above-ground saplings and minimal damage to root stocks of tree species that would maintain the regenerative capacity of a tropical dry forest subject to dry season wildfires.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of high-strength aluminum alloys that can operate at 250 degrees C and beyond remains a challenge to the materials community. In this paper we report preliminary development of nanostructural Al-Cu-Ni ternary alloys containing alpha-Al, binary Al2Cu and ternary Al2Cu4Ni intermetallics. The alloys exhibits fracture strength of similar to 1 GPa with similar to 9% fracture strain at room temperature. At 300 degrees C, the alloy retains the high strength. The reasons for such significant mechanical properties are rationalized by unraveling the roles and response of various microstructural features. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a nursery pollination mutualism, we asked whether environmental factors affected reproduction of mutualistic pollinators, non-mutualistic parasites and seed production via seasonal changes in plant traits such as inflorescence size and within-tree reproductive phenology. We examined seasonal variation in reproduction in Ficus racemosa community members that utilise enclosed inflorescences called syconia as nurseries. Temperature, relative humidity and rainfall defined four seasons: winter; hot days, cold nights; summer and wet seasons. Syconium volumes were highest in winter and lowest in summer, and affected syconium contents positively across all seasons. Greater transpiration from the nurseries was possibly responsible for smaller syconia in summer. The 3-5 degrees C increase in mean temperatures between the cooler seasons and summer reduced fig wasp reproduction and increased seed production nearly two-fold. Yet, seed and pollinator progeny production were never negatively related in any season confirming the mutualistic fig-pollinator association across seasons. Non-pollinator parasites affected seed production negatively in some seasons, but had a surprisingly positive relationship with pollinators in most seasons. While within-tree reproductive phenology did not vary across seasons, its effect on syconium inhabitants varied with season. In all seasons, within-tree reproductive asynchrony affected parasite reproduction negatively, whereas it had a positive effect on pollinator reproduction in winter and a negative effect in summer. Seasonally variable syconium volumes probably caused the differential effect of within-tree reproductive phenology on pollinator reproduction. Within-tree reproductive asynchrony itself was positively affected by intra-tree variation in syconium contents and volume, creating a unique feedback loop which varied across seasons. Therefore, nursery size affected fig wasp reproduction, seed production and within-tree reproductive phenology via the feedback cycle in this system. Climatic factors affecting plant reproductive traits cause biotic relationships between plants, mutualists and parasites to vary seasonally and must be accorded greater attention, especially in the context of climate change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We address the problem of separating a speech signal into its excitation and vocal-tract filter components, which falls within the framework of blind deconvolution. Typically, the excitation in case of voiced speech is assumed to be sparse and the vocal-tract filter stable. We develop an alternating l(p) - l(2) projections algorithm (ALPA) to perform deconvolution taking into account these constraints. The algorithm is iterative, and alternates between two solution spaces. The initialization is based on the standard linear prediction decomposition of a speech signal into an autoregressive filter and prediction residue. In every iteration, a sparse excitation is estimated by optimizing an l(p)-norm-based cost and the vocal-tract filter is derived as a solution to a standard least-squares minimization problem. We validate the algorithm on voiced segments of natural speech signals and show applications to epoch estimation. We also present comparisons with state-of-the-art techniques and show that ALPA gives a sparser impulse-like excitation, where the impulses directly denote the epochs or instants of significant excitation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultrafine-grained (UFG) materials with grain sizes in the submicrometer or nanometer range may be prepared through the application of severe plastic deformation (SPD) to bulk coarse-grained solids. These materials generally exhibit high strength but only very limited ductility in low-temperature testing, thereby giving rise to the so-called paradox of strength and ductility. This paradox is examined and a new quantitative diagram is presented which permits the easy insertion of experimental data. It is shown that relatively simple procedures are available for achieving both high strength and high ductility in UFG materials including processing the material to a very high strain and/or applying a very short-term anneal immediately after the SPD processing. Significant evidence is now available demonstrating the occurrence of grain boundary sliding in these materials at low temperatures, where this is attributed to the presence of non-equilibrium grain boundaries and the occurrence of enhanced diffusion along these boundaries.