895 resultados para alpha-adrenoceptor agonists and antagonists
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
BACKGROUND AND PURPOSE It has been proposed that BRL37344, SR58611 and CGP12177 activate b3-adrenoceptors in human atrium to increase contractility and L-type Ca2+ current (ICa-L). b3-adrenoceptor agonists are potentially beneficial for the treatment of a variety of diseases but concomitant cardiostimulation would be potentially harmful. It has also been proposed that (-)-CGP12177 activates the low affinity binding site of the b1-adrenoceptor in human atrium. We therefore used BRL37344, SR58611 and (-)-CGP12177 with selective b-adrenoceptor subtype antagonists to clarify cardiostimulant b-adrenoceptor subtypes in human atrium. EXPERIMENTAL APPROACH Human right atrium was obtained from patients without heart failure undergoing coronary artery bypass or valve surgery. Cardiomyocytes were prepared to test BRL37344, SR58611 and CGP12177 effects on ICa-L. Contractile effects were determined on right atrial trabeculae. KEY RESULTS BRL37344 increased force which was antagonized by blockade of b1- and b2-adrenoceptors but not by blockade of b3-adrenoceptors with b3-adrenoceptor-selective L-748,337 (1 mM). The b3-adrenoceptor agonist SR58611 (1 nM–10 mM) did not affect atrial force. BRL37344 and SR58611 did not increase ICa-L at 37°C, but did at 24°C which was prevented by L-748,337. (-)-CGP12177 increased force and ICa-L at both 24°C and 37°C which was prevented by (-)-bupranolol (1–10 mM), but not L-748,337. CONCLUSIONS AND IMPLICATIONS We conclude that the inotropic responses to BRL37344 are mediated through b1- and b2-adrenoceptors. The inotropic and ICa-L responses to (-)-CGP12177 are mediated through the low affinity site b1L-adrenoceptor of the b1-adrenoceptor. b3-adrenoceptor-mediated increases in ICa-L are restricted to low temperatures. Human atrial b3-adrenoceptors do not change contractility and ICa-L at physiological temperature.
Resumo:
The nicotinic Acetylcholine Receptor (nAChR) is the major class of neurotransmitter receptors that is involved in many neurodegenerative conditions such as schizophrenia, Alzheimer's and Parkinson's diseases. The N-terminal region or Ligand Binding Domain (LBD) of nAChR is located at pre- and post-synaptic nervous system, which mediates synaptic transmission. nAChR acts as the drug target for agonist and competitive antagonist molecules that modulate signal transmission at the nerve terminals. Based on Acetylcholine Binding Protein (AChBP) from Lymnea stagnalis as the structural template, the homology modeling approach was carried out to build three dimensional model of the N-terminal region of human alpha(7)nAChR. This theoretical model is an assembly of five alpha(7) subunits with 5 fold axis symmetry, constituting a channel, with the binding picket present at the interface region of the subunits. alpha-netlrotoxin is a potent nAChR competitive antagonist that readily blocks the channel resulting in paralysis. The molecular interaction of alpha-Bungarotoxin, a long chain alpha-neurotoxin from (Bungarus multicinctus) and human alpha(7)nAChR seas studied. Agonists such as acetylcholine, nicotine, which are used in it diverse array of biological activities, such as enhancements of cognitive performances, were also docked with the theoretical model of human alpha(7)nAChR. These docked complexes were analyzed further for identifying the crucial residues involved i interaction. These results provide the details of interaction of agonists and competitive antagonists with three dimensional model of the N-terminal region of human alpha(7)nAChR and thereby point to the design of novel lead compounds.
Resumo:
alpha(1)-adrenergic receptor (AR) activation is thought to be initiated by disruption of a constraining interhelical salt bridge (Porter et al., 1996). Disruption of this salt bridge is achieved through a competition for the aspartic acid residue in transmembrane domain three by the protonated amine of the endogenous ligand norepinephrine and a lysine residue in transmembrane domain seven. To further test this hypothesis, we investigated the possibility that a simple amine could mimic an important functional group of the endogenous ligand and break this alpha(1)-AR ionic constraint leading to agonism. Triethylamine (TEA) was able to generate concentration-dependent increases of soluble inositol phosphates in COS-1 cells transiently transfected with the hamster alpha(1b)-AR and in Rat-1 fibroblasts stably transfected with the human alpha(1a)-AR subtype. TEA was also able to synergistically potentiate the second messenger production by weak partial alpha(1)-AR agonists and this effect was fully inhibited by the alpha(1)-AR antagonist prazosin. However, this synergistic potentiation was not observed for full alpha(1)-AR agonists. Instead, TEA caused a parallel rightward shift of the dose-response curve, consistent with the properties of competitive antagonism. TEA specifically bound to a single population of alpha(1)-ARs with a K-i of 28.7 +/- 4.7 mM. In addition, the site of binding by TEA to the alpha(1)-AR is at the conserved aspartic acid residue in transmembrane domain three, which is part of the constraining salt bridge. These results indicate a direct interaction of TEA in the receptor agonist binding pocket that leads to a disruption of the constraining salt bridge, thereby initiating alpha(1)-AR activation.
Resumo:
The nicotinic Acetylcholine Receptor (nAChR) is the major class of neurotransmitter receptors that is involved in many neurodegenerative conditions such as schizophrenia, Alzheimer's and Parkinson's diseases. The N-terminal region or Ligand Binding Domain (LBD) of nAChR is located at pre- and post-synaptic nervous system, which mediates synaptic transmission. nAChR acts as the drug target for agonist and competitive antagonist molecules that modulate signal transmission at the nerve terminals. Based on Acetylcholine Binding Protein (AChBP) from Lymnea stagnalis as the structural template, the homology modeling approach was carried out to build three dimensional model of the N-terminal region of human alpha(7)nAChR. This theoretical model is an assembly of five alpha(7) subunits with 5 fold axis symmetry, constituting a channel, with the binding picket present at the interface region of the subunits. alpha-netlrotoxin is a potent nAChR competitive antagonist that readily blocks the channel resulting in paralysis. The molecular interaction of alpha-Bungarotoxin, a long chain alpha-neurotoxin from (Bungarus multicinctus) and human alpha(7)nAChR seas studied. Agonists such as acetylcholine, nicotine, which are used in it diverse array of biological activities, such as enhancements of cognitive performances, were also docked with the theoretical model of human alpha(7)nAChR. These docked complexes were analyzed further for identifying the crucial residues involved in interaction. These results provide the details of interaction of agonists and competitive antagonists with three dimensional model of the N-terminal region of human alpha(7)nAChR and thereby point to the design of novel lead compounds.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
1 the actions of the alpha(1)-adrenoceptor antagonist indoramin have been examined against the contractions induced by noradrenaline in the rat vas deferens and aorta taking into account a putative neuronal uptake blocking activity of this antagonist which could. result in self-cancelling actions.2 Indoramin behaved as a simple competitive antagonist of the contractions induced by noradrenaline in the vas deferens and aorta yielding pA(2) values of 7.38 +/- 0.05 (slope = 0.98 +/- 0.03) and 6.78 +/- 0.14 (slope = 1.08 +/- 0.06), respectively.3 When the experiments were repeated in the presence of cocaine (6 mu M) the potency (pA(2)) of indoramin in antagonizing the contractions of the vas deferens to noradrenaline was increased to 8.72 +/- 0.07 (slope = 1.10 +/- 0.05) while its potency remained unchanged in the aorta (pA(2) = 6.69 +/- 0.12; slope = 1.04 +/- 0.05).4 In denervated vas deferens, indoramin antagonized the contractions to noradrenaline with a potency similar to that found in the presence of cocaine (8.79 +/- 0.07; slope = 1.09 +/- 0.06).5 It is suggested that indoramin blocks alpha(1)-adrenoceptors and neuronal uptake in rat vas deferens resulting in Schild plots with slopes not different from unity even in the absence of selective inhibition of neuronal uptake. As a major consequence of this double mechanism of action, the pA(2) values for this antagonist are underestimated when calculated in situations where the neuronal uptake is active, yielding spurious pK(B) values.
Resumo:
In the present study, we investigated the effect of phenylephrine and clonidine (α1- and α2-adrenoceptor agonists, respectively) injected into the lateral preoptic area (LPOA) on the water intake induced by water deprivation in rats. In addition, the effects of prior injections of prazosin and yohimbine (α1- and α2-adrenoceptor antagonists, respectively) into the LPOA on the antidipsogenic action of phenylephrine and clonidine were investigated. After 30 h of water deprivation, the water intake of rats in a control experiment (saline injection) was 10.5 ± 0.8 ml/h. Injection of clonidine (5, 10, 20, and 40 nmol) into the LPOA reduced water intake to 6.3 ± 0.9, 4.9 ± 0.8, 3.6 ± 1.0, and 2.2 ± 0.7 ml/h, respectively. Similar reductions occurred after injection of 80 and 160 nmol phenylephrine into the LPOA (6.2 ± 1.6 and 4.8 ± 1.3 ml/h, respectively). Pretreatment with prazosin (40 nmol) abolished the antidipsogenic action of an 80-nmol dose of phenylephrine (11.3 ± 1.1 ml/h) and reduced the effect of a 20-nmol dose of clonidine (7.4 ± 1.4 ml/h). Yohimbine (20, 40, and 80 nmol), previously injected, produced no significant changes in the effects of either phenylephrine or clonidine. The present results show that phenylephrine and clonidine injected into the LPOA induce an antidipsogenic effect in water-deprived rat. They also suggest an involvement of α1-adrenoceptors in this effect. A possible participation of imidazole receptors in the effect of clonidine should also be taken into account. © 1993.
Resumo:
BACKGROUND AND PURPOSE The bed nucleus of the stria terminalis (BNST) is a limbic structure that is involved in the expression of conditioned contextual fear. Among the numerous neural inputs to the BNST, noradrenergic synaptic terminals are prominent and some evidence suggests an activation of this noradrenergic neurotransmission in the BNST during aversive situations. Here, we have investigated the involvement of the BNST noradrenergic system in the modulation of behavioural and autonomic responses induced by conditioned contextual fear in rats. EXPERIMENTAL APPROACH Male Wistar rats with cannulae bilaterally implanted into the BNST were submitted to a 10 min conditioning session (6 footshocks, 1.5 ma/ 3 s). Twenty-four hours later freezing and autonomic responses (mean arterial pressure, heart rate and cutaneous temperature) to the conditioning box were measured for 10 min. The adrenoceptor antagonists were administered 10 min before the re-exposure to the aversive context. KEY RESULTS L-propranolol, a non-selective beta-adrenoceptor antagonist, and phentolamine, a non-selective a-adrenoceptor antagonist, reduced both freezing and autonomic responses induced by aversive context. Similar results were observed with CGP20712, a selective beta 1-adrenoceptor antagonist, and WB4101, a selective a1-antagonist, but not with ICI118,551, a selective beta 2-adrenoceptor antagonist or RX821002, a selective a2-antagonist. CONCLUSIONS AND IMPLICATIONS These findings support the idea that noradrenergic neurotransmission in the BNST via a1- and beta 1-adrenoceptors is involved in the expression of conditioned contextual fear.
Resumo:
Tic-like movements in rodents bear close similarities to those observed in humans both pharmacologically and morphologically. Pharmacologically, tics are modulated by serotonergic and dopaminergic systems and abnormalities of these systems have been reported in Tourette's Syndrome (TS). Therefore, serotonergic and dopaminergic modulation of tics induced by a thyrotrophin-releasing hormone (TRH) analogue were studied as possible models for TS. The TRH analogue MK771 induced a variety of tic like movements in mice; blinking fore-paw-licking and fore-paw-tremor were quantified and serotonergic and dopaminergic modulation was investigated. The selective dopamine D1 receptor antagonists SCH23390 and SCH39166 and dopamine D2 antagonists raclopride and sulpiride had no effect on MK771 induced blinking. The D1 antagonists attenuated fore-paw-tremor and -licking while the D2 antagonists were generally without effect on these behaviours. Ketanserin (5-HT2A/ alpha-1 antagonist) and ritanserin (5-HT2A/2C antagonist) were able to attenuate MK771-induced blinking and ketanserin, mianserin (5-HT2A/2C antagonist) and prazosin (alpha-1 adrenoceptor antagonist) were able to attenuate MK771-induced fore-paw-tremor and -licking. The 5-HT2C/2B antagonist SB200646A was without effect on blinking and fore-paw-licking but dose-dependently potentiated fore-paw-tremor. The 5-HT1A agonists 8-OH DPAT and buspirone attenuated blinking at the lower doses tested but were ineffective at the higher doses; the converse was found for fore-paw-licking and -tremor behaviours.The effects of these ligands appeared to be at a postsynaptic 5-HTlA site since para-chlorophenylalanine was without effect on the manipulation of these behaviours. (S)-W A Y100135 was without effect on MK771-induced behaviours, spontaneous and DOl-induced head shakes. Because kynurenine potentiates head shakes and plasma concentrations are raised in TS patients the effects of kynurenine on the 5-HT2A/2C agonist DOl mediated head shake were established. Kynurenine potentiated the DOl head shake. Attempts were made to correlate serotonergic unit activity with tic like behaviour in cats but this proved unsuccessful. However, the pharmacological understanding of 5-HTlA receptor function has been hampered because of the lack of selective antagonists for this site. For this reason the effects of the novel 5-HTlA antagonists (S)-WA Y- 100135 and WAY -100635 were tested on 5-HT single-unit activity recorded from the dorsal-raphe-nucleus in the behaving cat. Both drugs antagonised the suppression of unit activity caused by 8-0H DPAT. (S)-WA Y-100135 reduced unit activity whereas WAY-100635 increased it. This suggests that WAY-100635 is acting as an antagonist at the 5-HTlA somatodendritic autoreceptor and that (S)W A Y -100135 acts as a partial agonist at this site. Aspects of tic like behaviour and serotonergic control are discussed.
Resumo:
17.1 Drugs for bronchial asthma and Chronic Obstructive Pulmonary Disease (COPD) 17.1.1 Introduction to asthma 17.1.2 Introduction to COPD 17.1.3 Drug delivery by inhalation 17.1.4 Drugs to treat 17.1.4.1 β2-adrenoceptor agonists 17.1.4.2 Muscarinic receptor antagonists 17.1.4.3 Leukotriene receptor antagonists 17.1.4.4 Theophylline 17.1.4.5 Oxygen for COPD 17.1.5 Drugs to prevent asthma 31.5.1 Glucocorticoids 31.5.2 Cromolyn sodium 17.1.6 Combination to treat and prevent asthma 17.1.7 Drug for allergic asthma – omalizumab 17.1.8 Emergency treatment of asthma 17.2. Expectorants, mucolytics, cough and oxygen 17.2.1 Introduction to expectorants and mucolytics 17.2.2 Expectorants 17.2.3 Mucolytics 17.2.4 Cough 17.2.5 Oxygen 17.3. Drugs for rhinitis and rhinorrea 17.3.1 Introduction 17.3.2 Histamine and H1-receptor antagonists 17.3.3 Sympathomimetic 17.3.4 Muscarinic receptor antagonists 17.3.4 Cromolyn sodium 17.3.5 Glucocorticoids
Resumo:
beta2-Adrenoceptor agonists (beta -agonists) are well known for their growth promoting and repartitioning effects in many species. Although the use of these compounds to increase muscle mass in stockfarming is prohibited within the EU, under directive 96/22/EC, significant illegal use still occurs. With legal and illegal synthesis of new structurally related compounds, the detection of traditional beta -agonists and new derivatives becomes increasingly problematical. This method describes the isolation and solubilisation of a beta2-adrenoceptor from a transfected Chinese hamster ovary cell line, using the detergent digitonin. The solubilised receptor retained its activity and was isolated from the cell membrane at a concentration of 550 +/- 100 fmol mg(-1) of solubilised protein. Competition analysis using the tritiated antagonist dihydroalprenolol revealed receptor affinity for five structurally different beta -agonists, with IC50 values ranging from 2.1 +/- 0.76 X 10(-7) M for salmeterol to 1.1 +/- 0.62 x 10(-5) M for ractopamine. This study has demonstrated that transfected cell lines with a high expression of beta2-adrenoceptors are a convenient source of active receptor material. Solubilised beta (2)-adrenoceptors could form the basis of a multi-analyte screening assay for use in routine screening.
Resumo:
beta2-Adrenoceptor agonists (beta -agonists) are well known for their growth promoting and repartitioning effects in many species. Although the use of these compounds to increase muscle mass in stockfarming is prohibited within the EU, under directive 96/22/EC, significant illegal use still occurs. With legal and illegal synthesis of new structurally related compounds, the detection of traditional beta -agonists and new derivatives becomes increasingly problematical. This method describes the isolation and solubilisation of a beta2-adrenoceptor from a transfected Chinese hamster ovary cell line, using the detergent digitonin. The solubilised receptor retained its activity and was isolated from the cell membrane at a concentration of 550 +/- 100 fmol mg(-1) of solubilised protein. Competition analysis using the tritiated antagonist dihydroalprenolol revealed receptor affinity for five structurally different beta -agonists, with IC50 values ranging from 2.1 +/- 0.76 X 10(-7) M for salmeterol to 1.1 +/- 0.62 x 10(-5) M for ractopamine. This study has demonstrated that transfected cell lines with a high expression of beta2-adrenoceptors are a convenient source of active receptor material. Solubilised beta (2)-adrenoceptors could form the basis of a multi-analyte screening assay for use in routine screening.
Resumo:
From the molecular mechanism of antagonist unbinding in the ß(1) and ß(2) adrenoceptors investigated by steered molecular dynamics, we attempt to provide further possibilities of ligand subtype and subspecies selectivity. We have simulated unbinding of ß(1) -selective Esmolol and ß(2) -selective ICI-118551 from both receptors to the extracellular environment and found distinct molecular features of unbinding. By calculating work profiles, we show different preference in antagonist unbinding pathways between the receptors, in particular, perpendicular to the membrane pathway is favourable in the ß(1) adrenoceptor, whereas the lateral pathway involving helices 5, 6 and 7 is preferable in the ß(2) adrenoceptor. The estimated free energy change of unbinding based on the preferable pathway correlates with the experimental ligand selectivity. We then show that the non-conserved K347 (6.58) appears to facilitate in guiding Esmolol to the extracellular surface via hydrogen bonds in the ß(1) adrenoceptor. In contrast, hydrophobic and aromatic interactions dominate in driving ICI-118551 through the easiest pathway in the ß(2) adrenoceptor. We show how our study can stimulate design of selective antagonists and discuss other possible molecular reasons of ligand selectivity, involving sequential binding of agonists and glycosylation of the receptor extracellular surface. © 2012 John Wiley & Sons A/S.