914 resultados para alpha(1) and alpha(2) receptors
Resumo:
8 p.
Resumo:
The role of the collagen-platelet interaction is of crucial importance to the haemostatic response during both injury and pathogenesis of the blood vessel wall. Of particular interest is the high affinity interaction of the platelet transmembrane receptor, alpha 2 beta 1, responsible for firm attachment of platelets to collagen at and around injury sites. We employ single molecule force spectroscopy (SMFS) using the atomic force microscope (AFM) to study the interaction of the I-domain from integrin alpha 2 beta 1 with a synthetic collagen related triple-helical peptide containing the high-affinity integrin-binding GFOGER motif, and a control peptide lacking this sequence, referred to as GPP. By utilising synthetic peptides in this manner we are able to study at the molecular level subtleties that would otherwise be lost when considering cell-to-collagen matrix interactions using ensemble techniques. We demonstrate for the first time the complexity of this interaction as illustrated by the complex multi-peaked force spectra and confirm specificity using control blocking experiments. In addition we observe specific interaction of the GPP peptide sequence with the I-domain. We propose a model to explain these observations.
Resumo:
We have compared the roles of adenosine diphosphate (ADP), thromboxanes and the integrin alpha(2)beta(1) in the activation of washed platelets by collagen in the presence of the alpha(IIb)beta3 antagonist lotrafiban. The stimulation of protein tyrosine phosphorylation by a collagen suspension is markedly delayed in the presence of the above inhibitors but shows substantial recovery with time. In comparison, activation of phospholipase C (PLC), Ca2+ elevation and dense granule secretion are more severely suppressed by the above inhibitors. blockade has a slightly greater inhibitory effect on all of the above responses than a combination of ADP receptor antagonists and cyclooxygenase inhibitor. Platelets exposed to a collagen monolayer show robust elevation of Ca2+ that is delayed in the presence of the above inhibitors and which is accompanied by of-granule secretion. These results demonstrate that secondary mediators and alpha(2)beta(1) modulate collagen-induced intracellular signaling but have negligible effect on GPVI signaling induced by the specific agonist convulxin. This work supports the postulate that the major role of of alpha(2)beta(1) is to increase the avidity of collagen for the platelet surface and by doing so enhance activation of GPVI. Therefore we propose an important role of secondary mediators in collagen-induced signaling is the indirect regulation of GPVI signaling via activation of alpha(2)beta(1).
Resumo:
Objective - Platelet stimulation by collagen and collagen-related peptides (CRPs) is associated with activation of protein tyrosine kinases. In the present study, we investigated the role of Src family tyrosine kinases in the initial adhesion events of human platelets to collagen and cross-linked CRP. Methods and Results - Under arterial flow conditions, a glycoprotein VI - specific substrate, cross-linked CRP, caused rapid (<2 second) platelet retention and protein tyrosine phosphorylation that were markedly decreased by the Src family kinase inhibitor pyrozolopyrimidine (PP2) or by aggregation inhibitor GRGDSP. CRP-induced platelet retention was transient, and 90% of single platelets or aggregates detached within seconds. PP2, although having no effect on RGD peptide-binding to CRP, completely blocked aggregation and tyrosine phosphorylation of Syk and phospholipase Cγ2 (PLCγ2). In contrast, PP2 weakly (<30%) suppressed firm adhesion to collagen mediated primarily by the alpha(2)beta(1) integrin. Although PP2 prevented activation of Syk and PLCgamma2 in collagen-adherent platelets, tyrosine phosphorylation of several unidentified protein bands persisted, as did autophosphorylation of pp125(FAK). Conclusions - These findings indicate that activation of Src-tyrosine kinases Syk and PLCgamma2 is not required for the initial stable attachment of human platelets to collagen and for FAK autophosphorylation. However, Src-tyrosine kinases are critical for glycoprotein VI - mediated signaling leading to platelet aggregation.
Resumo:
Mutations in Na+-glucose transporters (SGLT)-2 and hepatocyte nuclear factor (HNF)-1 alpha genes have been related to renal glycosuria and maturity-onset diabetes of the young 3, respectively. However, the expression of these genes have not been investigated in type 1 and type 2 diabetes. Here in kidney of diabetic rats, we tested the hypotheses that SGLT2 mRNA expression is altered; HNF-1 alpha is involved in this regulation; and glycemic homeostasis is a related mechanism. The in vivo binding of HNF-1 alpha into the SGLT2 promoter region in renal cortex was confirmed by chromatin immunoprecipitation assay. SGLT2 and HNF-1 alpha mRNA expression (by Northern and RT-PCR analysis) and HNF-1 binding activity of nuclear proteins (by EMSA) were investigated in diabetic rats and treated or not with insulin or phlorizin (an inhibitor of SGLT2). Results showed that diabetes increases SGLT2 and HNF-1 alpha mRNA expression (similar to 50%) and binding of nuclear proteins to a HNF-1 consensus motif (similar to 100%). Six days of insulin or phlorizin treatment restores these parameters to nondiabetic-rat levels. Moreover, both treatments similarly reduced glycemia, despite the differences in plasma insulin and urinary glucose concentrations, highlighting the plasma glucose levels as involved in the observed modulations. This study shows that SGLT2 mRNA expression and HNF-1 alpha expression and activity correlate positively in kidney of diabetic rats. It also shows that diabetes-induced changes are reversed by lowering glycemia, independently of insulinemia. Our demonstration that HNF-1 alpha binds DNA that encodes SGLT2 supports the hypothesis that HNF-1 alpha, as a modulator of SGLT2 expression, may be involved in diabetic kidney disease.
Resumo:
The motility of T cells depends on the dynamic spatial regulation of integrin-mediated adhesion and de-adhesion. Cathepsin X, a cysteine protease, has been shown to regulate T-cell migration by interaction with lymphocyte function associated antigen-1 (LFA-1). LFA-1 adhesion to the ICAM-1 is controlled by the association of actin-binding proteins with the cytoplasmic tail of the beta(2) chain of LFA-1. Cleavage by cathepsin X of the amino acid residues S(769), E(768) and A(767) from the C-terminal of the beta(2) cytoplasmic tail of LFA-1 is shown to promote binding of the actin-binding protein alpha-actinin-1. Furthermore, cathepsin X overexpression reduced LFA-1 clustering and induced an intermediate affinity LFA-1 conformation that is known to associate with a-actinin-1. increased levels of intermediate affinity LFA-1 resulted in augmented cell spreading due to reduced attachment of T cells to the ICAM-1-coated surface. Gradual cleavage of LFA-1 by cathepsin X enables the transition between intermediate and high affinity LFA-1, an event that is crucial for effective T-cell migration.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We investigated the participation of central alpha(2)-adrenoceptors and imidazoline receptors in the inhibition of water deprivation-induced water intake in rats. The alpha(2)-adrenoceptor and imidazoline antagonist idazoxan (320 nmol), but not the alpha(2)-adrenoceptor antagonist yohimbine, abolished the antidipsogenic effect of moxonidine (alpha(2)-adrenoceptor and imidazoline agonist, 20 nmol) microinjected into the medial septal area. Yohimbine abolished the antidipsogenic effect of moxonidine intracerebroventricularly. Therefore, central moxonidine may inhibit water intake acting independently on both imidazoline receptors and alpha(2)-adrenoceptors at different forebrain sites.
Resumo:
Water and NaCl intake is strongly inhibited by the activation of alpha(2)-adrenergic receptors with clonidine or moxonidine (alpha(2)-adrenergic/imidazoline agonists) injected peripherally or into the forebrain and by serotonin and cholecystokinin in the lateral parabrachial nucleus (LPBN). Considering that alpha(2)-adrenergic receptors exist in the LPBN and the similar origin of serotonergic and adrenergic afferent pathways to the LPBN, in this study we investigated the effects of bilateral injections of moxonidine alone or combined with RX 821002 (alpha(2)- adrenergic antagonist) into the LPBN on 1.8% NaCl and water intake induced by the treatment with s.c. furosemide (10 mg/kg)+captopril (5 mg/kg). Additionally, we investigated if moxonidine into the LPBN would modify furosemide+captopril-induced c-fos expression in the forebrain. Male Holtzman rats with cannulas implanted bilaterally in the LPBN were used. Contrary to forebrain injections, bilateral LPBN injections of moxonidine (0.1, 0.5 and 1 nmol/0.2 mul) strongly increased furosemide+captopril-induced 1.8% NaCl intake (16.6 +/- 2.7, 44.5 +/- 3.2 and 44.5 +/- 4.3 ml/2 h, respectively, vs. vehicle: 6.9 +/- 1.5 ml/2 h). Only the high dose of moxonidine increased water intake (23.3 +/- 3.8 ml/2 h, vs. vehicle: 12.1 +/- 2.6 ml/2 h). Prior injections of RX 821002 (10 and 20 nmol/0.2 mu1) abolished the effect of moxonidine (0.5 nmol) on 1.8% NaCl intake. Moxonidine into the LPBN did not modify furosemide+captopril-induced c-fos expression in forebrain areas related to the control of fluid-electrolyte balance. The results show that the activation of LPBN a2-adrenergic receptors enhances furosemide+captopril-induced 1.8% NaCl and water intake. This enhancement was not related to prior alteration in the activity of forebrain areas as suggested by c-fos expression. Previous and present results indicate opposite roles for alpha(2-)adrenergic receptors in the control of sodium and water intake according to their distribution in the rat brain. (C) 2004 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
In this study we investigated the influence of cu-adrenergic antagonists injections into the paraventricular nucleus (PVN) of the hypothalamus on the thirst and salt appetite, diuresis, natriuresis, and presser effects of angiotensin II (ANG II) stimulation of medial septal area (MSA). ANG II injection into the MSA induced water and sodium intake, diuresis, natriuresis, and presser responses. The previous injection of prazosin (an alpha (1)-adrenergic antagonist) into the PVN abolished, whereas previous administration of yohimbine (an alpha (2)-adrenergic antagonist) into the PVN increased the water and sodium intake, urinary, natriuretic, and presser responses induced by ANG ii injected into the MSA. Previous injection of a nonselective alpha -adrenergic antagonist, regitin, into the PVN blocked the urinary excretion, and reduced the water and sodium intake, sodium intake, and presser responses induced by ANG II injected into the MSA. The present results suggest that alpha -adrenergic pathways involving the PVN are important for the water and sodium excretion, urine and sodium excretion, and presser responses, induced by angiotensinergic activation of the MSA. (C) 2001 Elsevier B.V.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Medial amygdaloid nucleus (MeA) neurotransmission has an inhibitory influence on cardiovascular responses in rats submitted to restraint, which are characterized by both elevated blood pressure (BP) and intense heart rate (HR) increase. In the present study, we investigated the involvement of MeA adrenoceptors in the modulation of cardiovascular responses that are observed during an acute restraint. Male Wistar rats received bilateral microinjections of the selective alpha 1-adrenoceptor antagonist WB4101 (10, 15, and 20 nmol/100 nL) or the selective alpha 2-adrenoceptor antagonist RX821002 (10, 15, and 20 nmol/nL) into the MeA, before the exposure to acute restraint. The injection of WB4101 reduced the restraint-evoked tachycardia. In contrast, the injection of RX821002 increased the tachycardia. Both drugs had no influence on BP increases observed during the acute restraint. Our findings indicate that alpha 1 and alpha 2-adrenoceptors in the MeA play different roles in the modulation of the HR increase evoked by restraint stress in rats. Results suggest that alpha 1-adrenoceptors and alpha 2-adrenoceptors mediate the MeA-related facilitatory and inhibitory influences on restraint-related HR responses, respectively. (C) 2012 Elsevier Ltd. All rights reserved.