933 resultados para algoritmi non evolutivi pattern recognition analisi dati avanzata metodi matematici intelligenza artificiale non evolutive algorithms artificial intelligence
Resumo:
L'informazione è alla base della conoscenza umana. Senza, non si potrebbe sapere nulla di ciò che esiste, di ciò che è stato o di quello che potrebbe accadere. Ogni giorno si assimilano moltissime informazioni, che vengono registrate nella propria memoria per essere riutilizzate all'occorrenza. Ne esistono di vari generi, ma il loro insieme va a formare quella che è la cultura, educazione, tradizione e storia dell'individuo. Per questo motivo è importante la loro diffusione e salvaguardia, impedendone la perdita che costerebbe la dipartita di una parte di sé, del proprio passato o del proprio futuro. Al giorno d'oggi le informazioni possono essere acquisite tramite persone, libri, riviste, giornali, la televisione, il Web. I canali di trasmissione sono molti, alcuni più efficaci di altri. Tra questi, internet è diventato un potente strumento di comunicazione, il quale consente l'interazione tra chi naviga nel Web (ossia gli utenti) e una partecipazione attiva alla diffusione di informazioni. Nello specifico, esistono siti (chiamati di microblogging) in cui sono gli stessi utenti a decidere se un'informazione possa essere o meno inserita nella propria pagina personale. In questo caso, si è di fronte a una nuova "gestione dell'informazione", che può variare da utente a utente e può defluire in catene di propagazione (percorsi che compiono i dati e le notizie tra i navigatori del Web) dai risvolti spesso incerti. Ma esiste un modello che possa spiegare l'avanzata delle informazioni tra gli utenti? Se fosse possibile capirne la dinamica, si potrebbe venire a conoscenza di quali sono le informazioni più soggette a propagazione, gli utenti che più ne influenzano i percorsi, quante persone ne vengono a conoscenza o il tempo per cui resta attiva un'informazione, descrivendone una sorta di ciclo di vita. E' possibile nel mondo reale trovare delle caratteristiche ricorrenti in queste propagazioni, in modo da poter sviluppare un metodo universale per acquisirne e analizzarne le dinamiche? I siti di microblogging non seguono regole precise, perciò si va incontro a un insieme apparentemente casuale di informazioni che necessitano una chiave di lettura. Quest'ultima è proprio quella che si è cercata, con la speranza di poter sfruttare i risultati ottenuti nell'ipotesi di una futura gestione dell'informazione più consapevole. L'obiettivo della tesi è quello di identificare un modello che mostri con chiarezza quali sono i passaggi da affrontare nella ricerca di una logica di fondo nella gestione delle informazioni in rete.
Resumo:
La frenetica evoluzione sociale e culturale, data dal crescente e continuo bisogno di conoscenza dell’uomo, ha portato oggi a navigare in un oceano sconfinato di dati e informazioni. Esse assumono una propria peculiare importanza, un valore sia dal punto di vista del singolo individuo, sia all’interno di un contesto sociale e di un settore di riferimento specifico e concreto. La conseguente mutazione dell’interazione e della comunicazione a livello economico della società, ha portato a parlare oggi di economia dell’informazione. In un contesto in cui l’informazione rappresenta la risorsa principale per l’attività di crescita e sviluppo economico, è fondamentale possedere la più adeguata strategia organizzativa per la gestione dei dati grezzi. Questo per permetterne un’efficiente memorizzazione, recupero e manipolazione in grado di aumentare il valore dell’organizzazione che ne fa uso. Un’informazione incompleta o non accurata può portare a valutazioni errate o non ottimali. Ecco quindi la necessità di gestire i dati secondo specifici criteri al fine di creare un proprio vantaggio competitivo. La presente rassegna ha lo scopo di analizzare le tecniche di ottimizzazione di accesso alle basi di dati. La loro efficiente implementazione è di fondamentale importanza per il supporto e il corretto funzionamento delle applicazioni che ne fanno uso: devono garantire un comportamento performante in termini di velocità, precisione e accuratezza delle informazioni elaborate. L’attenzione si focalizzerà sulle strutture d’indicizzazione di tipo gerarchico: gli alberi di ricerca. Verranno descritti sia gli alberi su dati ad una dimensione, sia quelli utilizzati nel contesto di ricerche multi dimensionali (come, ad esempio, punti in uno spazio). L’ingente sforzo per implementare strutture di questo tipo ha portato gli sviluppatori a sfruttare i principi di ereditarietà e astrazione della programmazione ad oggetti al fine di ideare un albero generalizzato che inglobasse in sé tutte le principali caratteristiche e funzioni di una struttura di indicizzazione gerarchica, così da aumentarne la riusabilità per i più particolari utilizzi. Da qui la presentazione della struttura GiST: Generalized Search Tree. Concluderà una valutazione dei metodi d’accesso esposti nella dissertazione con un riepilogo dei principali dati relativi ai costi computazionali, vantaggi e svantaggi.
Resumo:
Il termine cloud ha origine dal mondo delle telecomunicazioni quando i provider iniziarono ad utilizzare servizi basati su reti virtuali private (VPN) per la comunicazione dei dati. Il cloud computing ha a che fare con la computazione, il software, l’accesso ai dati e servizi di memorizzazione in modo tale che l’utente finale non abbia idea della posizione fisica dei dati e la configurazione del sistema in cui risiedono. Il cloud computing è un recente trend nel mondo IT che muove la computazione e i dati lontano dai desktop e dai pc portatili portandoli in larghi data centers. La definizione di cloud computing data dal NIST dice che il cloud computing è un modello che permette accesso di rete on-demand a un pool condiviso di risorse computazionali che può essere rapidamente utilizzato e rilasciato con sforzo di gestione ed interazione con il provider del servizio minimi. Con la proliferazione a larga scala di Internet nel mondo le applicazioni ora possono essere distribuite come servizi tramite Internet; come risultato, i costi complessivi di questi servizi vengono abbattuti. L’obbiettivo principale del cloud computing è utilizzare meglio risorse distribuite, combinarle assieme per raggiungere un throughput più elevato e risolvere problemi di computazione su larga scala. Le aziende che si appoggiano ai servizi cloud risparmiano su costi di infrastruttura e mantenimento di risorse computazionali poichè trasferiscono questo aspetto al provider; in questo modo le aziende si possono occupare esclusivamente del business di loro interesse. Mano a mano che il cloud computing diventa più popolare, vengono esposte preoccupazioni riguardo i problemi di sicurezza introdotti con l’utilizzo di questo nuovo modello. Le caratteristiche di questo nuovo modello di deployment differiscono ampiamente da quelle delle architetture tradizionali, e i meccanismi di sicurezza tradizionali risultano inefficienti o inutili. Il cloud computing offre molti benefici ma è anche più vulnerabile a minacce. Ci sono molte sfide e rischi nel cloud computing che aumentano la minaccia della compromissione dei dati. Queste preoccupazioni rendono le aziende restie dall’adoperare soluzioni di cloud computing, rallentandone la diffusione. Negli anni recenti molti sforzi sono andati nella ricerca sulla sicurezza degli ambienti cloud, sulla classificazione delle minacce e sull’analisi di rischio; purtroppo i problemi del cloud sono di vario livello e non esiste una soluzione univoca. Dopo aver presentato una breve introduzione sul cloud computing in generale, l’obiettivo di questo elaborato è quello di fornire una panoramica sulle vulnerabilità principali del modello cloud in base alle sue caratteristiche, per poi effettuare una analisi di rischio dal punto di vista del cliente riguardo l’utilizzo del cloud. In questo modo valutando i rischi e le opportunità un cliente deve decidere se adottare una soluzione di tipo cloud. Alla fine verrà presentato un framework che mira a risolvere un particolare problema, quello del traffico malevolo sulla rete cloud. L’elaborato è strutturato nel modo seguente: nel primo capitolo verrà data una panoramica del cloud computing, evidenziandone caratteristiche, architettura, modelli di servizio, modelli di deployment ed eventuali problemi riguardo il cloud. Nel secondo capitolo verrà data una introduzione alla sicurezza in ambito informatico per poi passare nello specifico alla sicurezza nel modello di cloud computing. Verranno considerate le vulnerabilità derivanti dalle tecnologie e dalle caratteristiche che enucleano il cloud, per poi passare ad una analisi dei rischi. I rischi sono di diversa natura, da quelli prettamente tecnologici a quelli derivanti da questioni legali o amministrative, fino a quelli non specifici al cloud ma che lo riguardano comunque. Per ogni rischio verranno elencati i beni afflitti in caso di attacco e verrà espresso un livello di rischio che va dal basso fino al molto alto. Ogni rischio dovrà essere messo in conto con le opportunità che l’aspetto da cui quel rischio nasce offre. Nell’ultimo capitolo verrà illustrato un framework per la protezione della rete interna del cloud, installando un Intrusion Detection System con pattern recognition e anomaly detection.
Resumo:
I moderni motori a combustione interna diventano sempre più complessi L'introduzione della normativa antinquinamento EURO VI richiederà una significativa riduzione degli inquinanti allo scarico. La maggiore criticità è rappresentata dalla riduzione degli NOx per i motori Diesel da aggiungersi a quelle già in vigore con le precedenti normative. Tipicamente la messa a punto di una nuova motorizzazione prevede una serie di test specifici al banco prova. Il numero sempre maggiore di parametri di controllo della combustione, sorti come conseguenza della maggior complessità meccanica del motore stesso, causa un aumento esponenziale delle prove da eseguire per caratterizzare l'intero sistema. L'obiettivo di questo progetto di dottorato è quello di realizzare un sistema di analisi della combustione in tempo reale in cui siano implementati diversi algoritmi non ancora presenti nelle centraline moderne. Tutto questo facendo particolare attenzione alla scelta dell'hardware su cui implementare gli algoritmi di analisi. Creando una piattaforma di Rapid Control Prototyping (RCP) che sfrutti la maggior parte dei sensori presenti in vettura di serie; che sia in grado di abbreviare i tempi e i costi della sperimentazione sui motopropulsori, riducendo la necessità di effettuare analisi a posteriori, su dati precedentemente acquisiti, a fronte di una maggior quantità di calcoli effettuati in tempo reale. La soluzione proposta garantisce l'aggiornabilità, la possibilità di mantenere al massimo livello tecnologico la piattaforma di calcolo, allontanandone l'obsolescenza e i costi di sostituzione. Questa proprietà si traduce nella necessità di mantenere la compatibilità tra hardware e software di generazioni differenti, rendendo possibile la sostituzione di quei componenti che limitano le prestazioni senza riprogettare il software.
Resumo:
Obiettivo di questa tesi dal titolo “Analisi di tecniche per l’estrazione di informazioni da documenti testuali e non strutturati” è quello di mostrare tecniche e metodologie informatiche che permettano di ricavare informazioni e conoscenza da dati in formato testuale. Gli argomenti trattati includono l'analisi di software per l'estrazione di informazioni, il web semantico, l'importanza dei dati e in particolare i Big Data, Open Data e Linked Data. Si parlerà inoltre di data mining e text mining.
Resumo:
Faces are complex patterns that often differ in only subtle ways. Face recognition algorithms have difficulty in coping with differences in lighting, cameras, pose, expression, etc. We propose a novel approach for facial recognition based on a new feature extraction method called fractal image-set encoding. This feature extraction method is a specialized fractal image coding technique that makes fractal codes more suitable for object and face recognition. A fractal code of a gray-scale image can be divided in two parts – geometrical parameters and luminance parameters. We show that fractal codes for an image are not unique and that we can change the set of fractal parameters without significant change in the quality of the reconstructed image. Fractal image-set coding keeps geometrical parameters the same for all images in the database. Differences between images are captured in the non-geometrical or luminance parameters – which are faster to compute. Results on a subset of the XM2VTS database are presented.
Resumo:
The low resolution of images has been one of the major limitations in recognising humans from a distance using their biometric traits, such as face and iris. Superresolution has been employed to improve the resolution and the recognition performance simultaneously, however the majority of techniques employed operate in the pixel domain, such that the biometric feature vectors are extracted from a super-resolved input image. Feature-domain superresolution has been proposed for face and iris, and is shown to further improve recognition performance by capitalising on direct super-resolving the features which are used for recognition. However, current feature-domain superresolution approaches are limited to simple linear features such as Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA), which are not the most discriminant features for biometrics. Gabor-based features have been shown to be one of the most discriminant features for biometrics including face and iris. This paper proposes a framework to conduct super-resolution in the non-linear Gabor feature domain to further improve the recognition performance of biometric systems. Experiments have confirmed the validity of the proposed approach, demonstrating superior performance to existing linear approaches for both face and iris biometrics.
Resumo:
Modelling video sequences by subspaces has recently shown promise for recognising human actions. Subspaces are able to accommodate the effects of various image variations and can capture the dynamic properties of actions. Subspaces form a non-Euclidean and curved Riemannian manifold known as a Grassmann manifold. Inference on manifold spaces usually is achieved by embedding the manifolds in higher dimensional Euclidean spaces. In this paper, we instead propose to embed the Grassmann manifolds into reproducing kernel Hilbert spaces and then tackle the problem of discriminant analysis on such manifolds. To achieve efficient machinery, we propose graph-based local discriminant analysis that utilises within-class and between-class similarity graphs to characterise intra-class compactness and inter-class separability, respectively. Experiments on KTH, UCF Sports, and Ballet datasets show that the proposed approach obtains marked improvements in discrimination accuracy in comparison to several state-of-the-art methods, such as the kernel version of affine hull image-set distance, tensor canonical correlation analysis, spatial-temporal words and hierarchy of discriminative space-time neighbourhood features.
Resumo:
In the field of face recognition, Sparse Representation (SR) has received considerable attention during the past few years. Most of the relevant literature focuses on holistic descriptors in closed-set identification applications. The underlying assumption in SR-based methods is that each class in the gallery has sufficient samples and the query lies on the subspace spanned by the gallery of the same class. Unfortunately, such assumption is easily violated in the more challenging face verification scenario, where an algorithm is required to determine if two faces (where one or both have not been seen before) belong to the same person. In this paper, we first discuss why previous attempts with SR might not be applicable to verification problems. We then propose an alternative approach to face verification via SR. Specifically, we propose to use explicit SR encoding on local image patches rather than the entire face. The obtained sparse signals are pooled via averaging to form multiple region descriptors, which are then concatenated to form an overall face descriptor. Due to the deliberate loss spatial relations within each region (caused by averaging), the resulting descriptor is robust to misalignment & various image deformations. Within the proposed framework, we evaluate several SR encoding techniques: l1-minimisation, Sparse Autoencoder Neural Network (SANN), and an implicit probabilistic technique based on Gaussian Mixture Models. Thorough experiments on AR, FERET, exYaleB, BANCA and ChokePoint datasets show that the proposed local SR approach obtains considerably better and more robust performance than several previous state-of-the-art holistic SR methods, in both verification and closed-set identification problems. The experiments also show that l1-minimisation based encoding has a considerably higher computational than the other techniques, but leads to higher recognition rates.
Resumo:
Trajectory basis Non-Rigid Structure From Motion (NRSFM) currently faces two problems: the limit of reconstructability and the need to tune the basis size for different sequences. This paper provides a novel theoretical bound on 3D reconstruction error, arguing that the existing definition of reconstructability is fundamentally flawed in that it fails to consider system condition. This insight motivates a novel strategy whereby the trajectory's response to a set of high-pass filters is minimised. The new approach eliminates the need to tune the basis size and is more efficient for long sequences. Additionally, the truncated DCT basis is shown to have a dual interpretation as a high-pass filter. The success of trajectory filter reconstruction is demonstrated quantitatively on synthetic projections of real motion capture sequences and qualitatively on real image sequences.
Resumo:
Crashes that occur on motorways contribute to a significant proportion (40-50%) of non-recurrent motorway congestions. Hence, reducing the frequency of crashes assists in addressing congestion issues (Meyer, 2008). Crash likelihood estimation studies commonly focus on traffic conditions in a short time window around the time of a crash while longer-term pre-crash traffic flow trends are neglected. In this paper we will show, through data mining techniques that a relationship between pre-crash traffic flow patterns and crash occurrence on motorways exists. We will compare them with normal traffic trends and show this knowledge has the potential to improve the accuracy of existing models and opens the path for new development approaches. The data for the analysis was extracted from records collected between 2007 and 2009 on the Shibuya and Shinjuku lines of the Tokyo Metropolitan Expressway in Japan. The dataset includes a total of 824 rear-end and sideswipe crashes that have been matched with crashes corresponding to traffic flow data using an incident detection algorithm. Traffic trends (traffic speed time series) revealed that crashes can be clustered with regards to the dominant traffic patterns prior to the crash. Using the K-Means clustering method with Euclidean distance function allowed the crashes to be clustered. Then, normal situation data was extracted based on the time distribution of crashes and were clustered to compare with the “high risk” clusters. Five major trends have been found in the clustering results for both high risk and normal conditions. The study discovered traffic regimes had differences in the speed trends. Based on these findings, crash likelihood estimation models can be fine-tuned based on the monitored traffic conditions with a sliding window of 30 minutes to increase accuracy of the results and minimize false alarms.
Resumo:
This paper presents ongoing work toward constructing efficient completely non-malleable public-key encryption scheme based on lattices in the standard (common reference string) model. An encryption scheme is completely non-malleable if it requires attackers to have negligible advantage, even if they are allowed to transform the public key under which the related message is encrypted. Ventre and Visconti proposed two inefficient constructions of completely non-malleable schemes, one in the common reference string model using non-interactive zero-knowledge proofs, and another using interactive encryption schemes. Recently, two efficient public-key encryption schemes have been proposed, both of them are based on pairing identity-based encryption.
Resumo:
A robust visual tracking system requires an object appearance model that is able to handle occlusion, pose, and illumination variations in the video stream. This can be difficult to accomplish when the model is trained using only a single image. In this paper, we first propose a tracking approach based on affine subspaces (constructed from several images) which are able to accommodate the abovementioned variations. We use affine subspaces not only to represent the object, but also the candidate areas that the object may occupy. We furthermore propose a novel approach to measure affine subspace-to-subspace distance via the use of non-Euclidean geometry of Grassmann manifolds. The tracking problem is then considered as an inference task in a Markov Chain Monte Carlo framework via particle filtering. Quantitative evaluation on challenging video sequences indicates that the proposed approach obtains considerably better performance than several recent state-of-the-art methods such as Tracking-Learning-Detection and MILtrack.