1000 resultados para al-Qahira


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hot workability of an Al-Mg-Si alloy has been studied by conducting constant strain-rate compression tests. The temperature range and strain-rate regime selected for the present study were 300-550 degrees C and 0.001-1 s(-1), respectively. On the basis of true stress data, the strain-rate sensitivity values were calculated and used for establishing processing maps following the dynamic materials model. These maps delineate characteristic domains of different dissipative mechanisms. Two domains of dynamic recrystallization (DRX) have been identified which are associated with the peak efficiency of power dissipation (34%) and complete reconstitution of as-cast microstructure. As a result, optimum hot ductility is achieved in the DRX domains. The strain rates at which DRX domains occur are determined by the second-phase particles such as Mg2Si precipitates and intermetallic compounds. The alloy also exhibits microstructural instability in the form of localized plastic deformation in the temperature range 300-350 degrees C and at strain rate 1 s(-1).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of Li+ ions on the corrosion behaviour of the Al-Li alloy 8090-T851 and of commercially pure aluminium in aqueous solutions at pH 12 was studied by weight loss and electrochemical polarisation methods. The inhibiting role of Li+ was concentration dependent, corrosion rate decreasing lineally with log[Li+] in the concentration range 10(-4)-10(-1) mol L(-1). A change from general to pitting corrosion was evident from scanning election microscopy studies. Polarisation studies revealed that Li+ primarily acts as an anodic inhibitor (passivator). Passive film formation and stability also become more feasible with increasing Li+ concentration. Fitting potential was dependent on the Cl- ion concentration in the solution. Both materials were affected similarly by the presence of Li+ ions, the corrosion rate of the alloy being slightly lower. This is attributed to the lithium in the alloy acting as a source of lithium for passive film formation. (C) 1995 The Institute of Materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transport properties of quasicrystals in rapidly solidified as well as heat-treated Al65CU20Cr15 alloys were studied over a wide temperature range as a function of structure and microstructure. The characterization was done using x-ray diffraction, transmission electron microscopy and differential scanning calorimetry. Particular attention was paid to primitive to face-centered quasicrystalline transformation which occurs on annealing and the effect of microstructures on the transport behavior. The temperature dependence of resistivity is found to depend crucially on the microstructure of the alloy. Further, ordering enhances the negative temperature coefficient of resistivity. The low-temperature (T less than or equal to 25 K) resistivity of Al65Cu20Cr15 has been compared with that of Al63.5Cu24.5Fe12 alloy. In this region p(T) can be well described by a root T contribution arising from electron-electron interaction. We discuss our results in view of current theories.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermal analysis and interrupted quench experiments have been carried out to study the formation of beta-FeSiAl5 and (Be-Fe)-BeSiFe2Al8 phases in Al-7Si-0.3Mg alloy with and without Be addition. In the base alloy with 0.6% Fe (without Be addition), a needle- and plate-shaped beta-phase is present in the interdendritic regions and is formed by a ternary eutectic reaction. In the Be- added alloy with 0.6% Fe, a Be-Fe phase of Chinese script and polygon shapes grows along with the primary alpha-Al dendrites, leading to superior mechanical properties. It is proposed that this Be-Fe phase is formed by a peritectic reaction. Be addition has also resulted in some grain refinement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present investigation, Al 2024-15vol.%Al2O3 particulate (average size, 18 mu m) composites were fabricated using the liquid metallurgy route. The wear and friction characteristics of Al alloy 2024 and Al 2024-15vol.%Al2O3p, composite in the as-extruded and peak-aged conditions were studied using a pin-on-disc machine (with a steel disc as the counterface material). The worn surfaces, subsurfaces and the debris were analysed in a scanning electron microscope.The performance of the composite in the as-extruded condition is slightly inferior to that of the unreinforced alloy. However, in the T6 condition, although the wear rates of two materials are initially comparable, the unreinforced alloy seizes while the composite does not within the tested range employed. In the as-extruded condition, the presence of Al2O3 particles is not particularly beneficial as they fracture and result in extensive localized cracking and removal of material from the surface. In the peak-aged condition, however, while the unreinforced alloy exhibits severe plastic deformation and undergoes seizure, there is no significant change in the mechanism in the case of the composite. Except in the case of the peak-aged unreinforced alloy, worn surfaces of all other materials show the presence of an iron-rich layer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structural state of K-feldspars in the quartzofeldspathic gneisses, charnockites, metapelites and pegmatites from the southern Kamataka, northern Tamil Nadu and southern Kerala high-grade regions of southern India has been characterized using petrographic and powder X-ray diffraction methods. The observed distribution pattern of structural state with a preponderance of disordered K-feldspar polymorphs in granulites compared to the ordered microclines in the amphibolite facies rocks is interpreted to reflect principally the varying H2O contents in the metamorphic-metasomatic fluids across metamorphic grade. The K-feldspars in the pegmatites of granitic derivation and in a pegmatite of inferred metamorphic origin also point to the important role of aqueous fluids in their structural state.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rapid solidification of a ternary Al-Cu-Zr alloy results in a nanocomposite microstructure. In this study, melt spinning a Al82Cu15Zr3 alloy has resulted in the combined occurrence of, (a) 0.5 mu m sized grains of Al solid solution and (b) fine grains (10-20 nm) of intermetallic Al2Cu (theta) and alpha-Al, along side each other. The larger alpha-Al grains contain nanometric GP zones, with the Zr addition resulting in a grain refinement. In the other type of microstructure Zr promotes simultaneous nucleation of nanosized grains of the two equilibrium phases, Al2Cu and alpha-Al. Both these lead to a very high hardness of similar to 540 VHN for this alloy and can be used as a candidate for a high strength alloy with good ductility at a low strain rate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sliding-wear behavior of Al2O3-SiC-Al composites prepared by melt oxidation against a steel counterface has been recorded in a pin-on-disk machine. At high speeds and pressures (10 m/s, 20 MPa), friction and wear appear to be principally controlled by the in-situ formation of an interfacial film that consists of a layer of Fe3O4. The formation of this him is examined as a function of sliding speed, lubrication, and composite microstructure. A model is proposed in which high surface temperatures cause the preferential extrusion of aluminum from the composite onto the pin/disk interface. This promotes the adhesive pickup of iron and its oxidation to form a stable tribologically beneficial layer of Fe3O4.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study of interfaces in quasicrystalline alloys is relatively new. Apart From the change in orientation, symmetry and chemistry which can occur across homophase and heterophase boundaries in crystalline materials, we have the additional, exciting possibility of an interface between quasicrystalline and its rational approximant. High resolution electron microscopy is a powerful technique to study the structural details of such interfaces. We report the results of a HREM study of the interface between the icosahedral phase and the related Al13Fe4 type monoclinic phase in melt spun and annealed Al65Cu20Fe15 alloy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultra low-load-dynamic microhardness testing facilitates the hardness measurements in a very low volume of the material and thus is suited for characterization of the interfaces in MMC's. This paper details the studies on age-hardening behavior of the interfaces in Al-Cu-5SiC(p) composites characterized using this technique. Results of hardness studies have been further substantiated by TEM observations. In the solution-treated condition, hardness is maximum at the particle/matrix interface and decreases with increasing distance from the interface. This could be attributed to the presence of maximum dislocation density at the interface which decreases with increasing distance from the interface. In the case of composites subjected to high temperature aging, hardening at the interface is found to be faster than the bulk matrix and the aging kinetics becomes progressively slower with increasing distance from the interface. This is attributed to the dislocation density gradient at the interface, leading to enhanced nucleation and growth of precipitates at the interface compared to the bulk matrix. TEM observations reveal that the sizes of the precipitates decrease with increasing distance from the interface and thus confirms the retardation in aging kinetics with increasing distance from the interface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Al-7Si-0.3Mg is a commonly used commercial casting alloy because of its excellent castability combined with good mechanical properties. The post-casting heat treatment is one factor that affects the mechanical properties; during heat treat ment, a delay between solutionizing and artificial aging (delayed aging) leads to a reduction in hardness, ultimate tensile strength, and yield strength in the alloy. The investigation reported here was aimed at understanding the extent to which the harmful effect of delayed aging on hardness/strength can be nullified. The results obtained were explained using Pashley's kinetic model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study, 6061 Al metallic matrix was reinforced by 12.2 wt% df SiC particulates using liquid metallurgy route. The composite material thus obtained was extruded and characterized in the as-solutionized and peak aged conditions in order to delineate the effect of aging associated precipitation of secondary phases on the tensile fracture behavior of the composite samples. The results' of microstructural characterization studies carried out using scanning electron microscope revealed the increased presence of precipitated secondary phases in the metallic matrix and a more pronounced interfacial segregation of alloying elements in case of peak aged samples when compared to the as-solutionized samples. The results of the fractographic studies conducted on the as-solutionized samples revealed that the failure was dominated by the SiC particulates cracking while for the peak aged samples the fracture surface revealed a comparatively more pronounced SiC/6061 Al debonding and reduced SiC particulates cracking. This change in the failure behavior was rationalized in terms of embrittlement of the interfacial region brought about by the aging heat treatment and is correlated, in addition, with the mechanical properties of the composite samples in as-solutionized and peak aged conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rapid solidification techniques can be used to produce the embedded nanoparticles in a desired matrix. The origin and morphology of these small particles and their transformation behaviour are still not fully understood. In this paper, we discuss the issues involved and present some interesting results in Al-Pb-In and Cu-Fe-Si systems.