993 resultados para air - sea exchanges
Resumo:
Benthic foraminiferal d13C and Cd/Ca studies suggest that deep Atlantic circulation during the Last Glacial Maximum was very different from today, with high-nutrient (low d13C, high Cd) deep Southern Ocean Water (SOW) penetrating far into the North Atlantic. However, if some glacial d13C values are biased by productivity artifacts and/or air-sea exchange processes, then the existing d13C data may be consistent with the continual dominance of North Atlantic Deep Water (NADW). Cibicidoides wuellerstorfi Cd/Ca results presented here indicate that the glacial North Atlantic was strongly enriched in dissolved Cd below ~2500 m depth. If NADW formation was still vigorous relative to SOW formation, these data could be explained by either increased preformed nutrient levels in the high-latitude North Atlantic or by increased organic matter remineralization within lower NADW. High glacial Zn/Ca values in the same samples, however, are best explained by a substantially increased mixing with Zn-rich SOW. The cause was most likely a partial replacement of NADW by less dense Glacial North Atlantic Intermediate Water. This reorganization also lowered deep North Atlantic [CO3]2- concentrations by perhaps 10 to 15 µmol/kg.
Resumo:
Biological productivity and carbon export in the equatorial Atlantic are thought to have been dramatically higher during the last glacial period than during the Holocene. Here we reconstruct the pH and CO2 content of surface waters from the eastern equatorial Atlantic Ocean over the past ~30 k.y. using the boron isotope composition of Globigerinoides ruber (a mixed-layer-dwelling planktic foraminifera). Our new record, combined with previously published data, indicates that during the last glacial, in contrast to today, a strong west to east gradient existed in the extent of air:sea equilibrium with respect to pCO2 (DeltapCO2), with the eastern equatorial Atlantic acting as a significant source of CO2 (+100 µatm) while the western Atlantic remained close to equilibrium (+25 µatm). This pattern suggests that a fivefold increase in the upwelling rate of deeper waters drove increased Atlantic productivity and large-scale regional cooling during the last glacial, but the higher than modern DeltapCO2 in the east indicates that export production did not keep up with enhanced upwelling of nutrients. However, the downstream decline of DeltapCO2 provides evidence that the unused nutrients from the east were eventually used for biologic carbon export, thereby effectively negating the impact of changes in upwelling on atmospheric CO2 levels. Our findings indicate that the equatorial Atlantic exerted a minimal role in contributing to lower glacial-age atmospheric CO2.
Resumo:
We present three new benthic foraminiferal delta13C, delta18O, and total organic carbon time series from the eastern Atlantic sector of the Southern Ocean between 41°S and 47°S. The measured glacial delta13C values belong to the lowest hitherto reported. We demonstrate a coincidence between depleted late Holocene (LH) delta13C values and positions of sites relative to ocean surface productivity. A correction of +0.3 to +0.4 [per mil VPDB] for a productivity-induced depletion of Last Glacial Maximum (LGM) benthic delta13C values of these cores is suggested. The new data are compiled with published data from 13 sediment cores from the eastern Atlantic Ocean between 19°S and 47°S, and the regional deep and bottom water circulation is reconstructed for LH (4-0 ka) and LGM (22-16 ka) times. This extends earlier eastern Atlantic-wide synoptic reconstructions which suffered from the lack of data south of 20°S. A conceptual model of LGM deep-water circulation is discussed that, after correction of southernmost cores below the Antarctic Circumpolar Current (ACC) for a productivity-induced artifact, suggests a reduced formation of both North Atlantic Deep Water in the northern Atlantic and bottom water in the southwestern Weddell Sea. This reduction was compensated for by the formation of deep water in the zone of extended winter sea-ice coverage at the northern rim of the Weddell Sea, where air-sea gas exchange was reduced. This shift from LGM deep-water formation in the region south of the ACC to Holocene bottom water formation in the southwestern Weddell Sea, can explain lower preformed d13CDIC values of glacial circumantarctic deep water of approximately 0.3 per mil to 0.4 per mil. Our reconstruction brings Atlantic and Southern Ocean d13C and Cd/Ca data into better agreement, but is in conflict, however, with a scenario of an essentially unchanged thermohaline deep circulation on a global scale. Benthic delta18O-derived LGM bottom water temperatures, by 1.9°C and 0.3°C lower than during the LH at deepest southern and shallowest northern sites, respectively, agree with the here proposed reconstruction of deep-water circulation in the eastern South Atlantic Ocean.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-05
Resumo:
This paper ends with a brief discussion of climate change and suggests that a practical solution would be to transfer much of the current air, sea and long-haul trucking of intercontinental freight between China and Europe (and the USA) to maglev systems. First we review the potential of Asian knowledge management and organisational learning and contrast this against Western precepts finding that there seems to be little incentive to 'look after one's fellows' in China (and perhaps across Asia) outside of tight personal guanxi networks. This is likely to be the case in the intense production regions of China where little time is allowed for 'organisational learning' by the staff and there is little incentive to initiate 'knowledge management' by senior managers. Thus the 'tragedy of the commons' will be enacted by individuals, township, and provincial leaders upwards to top ministers - no one will care for the climate or pollution, only for their own group and their wealth creation prospects. Copyright © 2011 Inderscience Enterprises Ltd.
Resumo:
Millennial-scale climate changes during the last glacial period and deglaciation were accompanied by rapid changes in atmospheric CO2 that remain unexplained. While the role of the Southern Ocean as a 'control valve' on ocean-atmosphere CO2 exchange has been emphasized, the exact nature of this role, in particular the relative contributions of physical (for example, ocean dynamics and air-sea gas exchange) versus biological processes (for example, export productivity), remains poorly constrained. Here we combine reconstructions of bottom-water [O2], export production and 14C ventilation ages in the sub-Antarctic Atlantic, and show that atmospheric CO2 pulses during the last glacial- and deglacial periods were consistently accompanied by decreases in the biological export of carbon and increases in deep-ocean ventilation via southern-sourced water masses. These findings demonstrate how the Southern Ocean's 'organic carbon pump' has exerted a tight control on atmospheric CO2, and thus global climate, specifically via a synergy of both physical and biological processes.
Resumo:
The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation hosted at the data publisher PANGAEA was initiated in 2008 and is updated on a regular basis (doi:10.1594/PANGAEA.149999). By January 2015, a total of 581 data sets (over 4 000 000 data points) from 539 papers had been archived. Here we present the developments of this data compilation five years since its first description by Nisumaa et al. (2010). Most of study sites from which data archived are still in the Northern Hemisphere and the number of archived data from studies from the Southern Hemisphere and polar oceans are still relatively low. Data from 60 studies that investigated the response of a mix of organisms or natural communities were all added after 2010, indicating a welcomed shift from the study of individual organisms to communities and ecosystems. The initial imbalance of considerably more data archived on calcification and primary production than on other processes has improved. There is also a clear tendency towards more data archived from multifactorial studies after 2010. For easier and more effective access to ocean acidification data, the ocean acidification community is strongly encouraged to contribute to the data archiving effort, and help develop standard vocabularies describing the variables and define best practices for archiving ocean acidification data.
Resumo:
The stabilization of energy supply in Brazil has been a challenge for the operation of the National Interconnected System in face of hydrological and climatic variations. Thermoelectric plants have been used as an emergency source for periods of water scarcity. The utilization of fossil fuels, however, has elevated the cost of electricity. On the other hand, offshore wind energy has gained importance in the international context and is competitive enough to become a possibility for future generation in Brazil. In this scenario, the main goal of this thesis was to investigate the magnitude and distribution of offshore wind resources, and also verify the possibilities of complementing hydropower. A data series of precipitation from the Climatic Research Unit (CRU) Blended Sea Winds from the National Climatic Data Center (NCDC/NOAA) were used. According to statistical criteria, three types of complementarity were found in the Brazilian territory: hydro × hydro, wind × wind and hydro × wind. It was noted a significant complementarity between wind and hydro resources (r = -0.65), mainly for the hydrographical basins of the southeast and central regions with Northeastern Brazil winds. To refine the extrapolation of winds over the ocean, a method based on the Monin-Obukhov theory was used to model the stability of the atmospheric boundary layer. Objectively Analyzed Air-Sea Flux (OAFLUX) datasets for heat flux, temperature and humidity, and also sea level pressure data from NCEP/NCAR were used. The ETOPO1 from the National Geophysical Data Center (NGDC/NOAA) provided bathymetric data. It was found that shallow waters, between 0-20 meters, have a resource estimated at 559 GW. The contribution of wind resources to hydroelectric reservoir operation was investigated with a simplified hybrid wind-hydraulic model, and reservoir level, inflow, outflow and turbine production data. It was found that the hybrid system avoids drought periods, continuously saving water from reservoirs through wind production. Therefore, from the results obtained, it is possible to state that the good winds from the Brazilian coast can, besides diversifying the electric matrix, stabilize the hydrological fluctuations avoiding rationing and blackouts, reducing the use of thermal power plants, increasing the production cost and emission of greenhouse gases. Public policies targeted to offshore wind energy will be necessary for its full development.
Resumo:
Sediment cores from the southern continental margin of Australia are near the formation region of Antarctic Intermediate Water (AAIW) and Subantarctic Mode Water and record the changes in these water masses from the last glacial maximum through the present. Carbon and oxygen isotopes were measured on the benthic foraminiferal species Planulina wuellerstrorfi for both the Recent and last glacial maximum sections of the cores and were then used to reconstruct temperature and carbon isotopic water column profiles. The glacial oxygen isotope profile indicates a vertical temperature structure for this region similar to that in today's Subantarctic Zone. Although intermediate water delta13C cannot be used as a nutrient tracer in this region because of the large influence of air-sea carbon isotopic exchange on this water mass, delta13C can be used as a water mass tracer. Today, AAIW properties reflect contributions from cool, fresh Antarctic Surface Waters (2/3) and warm, salty waters from the Indian Ocean (1/3). When examined in conjuction with the glacial delta13C and delta18C data from the north Indian and Southern Oceans, our data suggest a much reduced contribution of North Indian Ocean intermediate water to glacial Antarctic Intermediate Water relative to the contribution of Antarctic Surface Water. This fresher, cooler glacial Antarctic Intermediate Water would be distributed to the intermediate-depth ocean, thus decreasing the transport of salt produced in the North Indian Ocean to the rest of the world's oceans. Combined with evidence for a reduced influence of North Atlantic Deep Water, these results suggest major changes in the pathways for the redistribution of heat and salt in the glacial ocean.
Resumo:
No clear scenario has yet been able to explain the full carbon drawdown that occurred during the Last Glacial Maximum (LGM); however, increased export production (EP) in the Subantarctic Zone (SAZ) of the Southern Ocean due to iron (Fe) fertilisation has been proposed to have provided a key mechanism affecting the air-sea partitioning of carbon. We chronicle changes in marine EP based on four sediment cores in Subtropical Waters (STW) and SAZ around New Zealand since the LGM. For the first time in this region, we present 230-Thorium normalised fluxes of biogenic opal, carbonate (CaCO3), excess Barium (xsBa), and organic Carbon (Corg). In STW and SAZ, these flux variations show that EP did not change markedly since the LGM. The only exception was a site in the SAZ close to the STF, where we suggest the STF shifted over the core site, driving increased EP. To understand why EP was mostly low and constant we investigated dust deposition changes by measuring lithogenic fluxes at the four sites. These data are coherent with an increased dust deposition in the southwest Pacific during the LGM. Additionally, we infer an increased lithogenic material discharge from erosion and glacier melts during the deglaciation, limited to the Campbell Plateau. Therefore, we propose that even though increased glacial dust deposition may have relieved Fe limitation within the SAZ, the availability of silicic acid (Si(OH)4) limited any resultant increase in carbon export during the LGM. Consequently, we infer low Si(OH)4 concentrations in the SAZ that have not significantly changed since the LGM. This result suggests that both Si(OH)4 and Fe co-limit EP in the SAZ around New Zealand, which would be consistent with modern process studies.
Resumo:
Halocarbons, halogenated short-chained hydrocarbons, are produced naturally in the oceans by biological and chemical processes. They are emitted from surface seawater into the atmosphere, where they take part in numerous chemical processes such as ozone destruction and the oxidation of mercury and dimethyl sulfide. Here we present oceanic and atmospheric halocarbon data for the Peruvian upwelling obtained during the M91 cruise onboard the research vessel Meteor in December 2012. Surface waters during the cruise were characterized by moderate concentrations of bromoform (CHBr3) and dibromomethane (CH2Br2) correlating with diatom biomass derived from marker pigment concentrations, which suggests this phytoplankton group as likely source. Concentrations measured for the iodinated compounds methyl iodide (CH3I) of up to 35.4 pmol L-1, chloroiodomethane (CH2ClI) of up to 58.1 pmol L-1 and diiodomethane (CH2I2) of up to 32.4 pmol L-1 in water samples were much higher than previously reported for the tropical Atlantic upwelling systems. Iodocarbons also correlated with the diatom biomass and even more significantly with dissolved organic matter (DOM) components measured in the surface water. Our results suggest a biological source of these compounds as significant driving factor for the observed large iodocarbon concentrations. Elevated atmospheric mixing ratios of CH3I (up to 3.2 ppt), CH2ClI (up to 2.5 ppt) and CH2I2 (3.3 ppt) above the upwelling were correlated with seawater concentrations and high sea-to-air fluxes. The enhanced iodocarbon production in the Peruvian upwelling contributed significantly to tropospheric iodine levels.