933 resultados para advanced solid tumors
Resumo:
The human aurora family of serine-threonine kinases comprises three members, which act in concert with many other proteins to control chromosome assembly and segregation during mitosis. Aurora dysfunction can cause aneuploidy, mitotic arrest, and cell death. Aurora kinases are strongly expressed in a broad range of cancer types. Aurora A expression in tumors is often associated with gene amplification, genetic instability, poor histologic differentiation, and poor prognosis. Aurora B is frequently expressed at high levels in a variety of tumors, often coincidently with aurora A, and expression level has also been associated with increased genetic instability and clinical outcome. Further, aurora kinase gene polymorphisms are associated with increased risk or early onset of cancer. The expression of aurora C in cancer is less well studied. In recent years, several small-molecule aurora kinase inhibitors have been developed that exhibit preclinical activity against a wide range of solid tumors. Preliminary clinical data from phase I trials have largely been consistent with cytostatic effects, with disease stabilization as the best response achieved in solid tumors. Objective responses have been noted in leukemia patients, although this might conceivably be due to inhibition of the Abl kinase. Current challenges include the optimization of drug administration, the identification of potential biomarkers of tumor sensitivity, and combination studies with cytotoxic drugs. Here, we summarize the most recent preclinical and clinical data and discuss new directions in the development of aurora kinase inhibitors as antineoplastic agents.
Resumo:
BACKGROUND: ABO major compatibility is essential in transfusions of red blood cells but is not requisite in PLT transfusions. In adults there is some evidence that transfusion efficacy of ABO blood group-identical platelets (PLTs) is superior to major-mismatched PLTs. However, in children this question has not been investigated for more than 30 years. STUDY DESIGN AND METHODS: In a prospective study, the efficacy (based on the 1-hour percentage of PLT recovery [PPR(1hr)]) of 400 eligible ABO blood group-identical or out-of-group apheresis PLT concentrates (APCs), transfused mainly prophylactically to 50 children with hematologic malignancies, solid tumors, or aplastic anemia was investigated. The primary objective was to compare PPR(1hr) between ABO-identical and major-mismatched transfusions. RESULTS: After ABO major-mismatched transfusions, PPR(1hr) was significantly lower than after ABO blood group-identical transfusions (median 21% vs. 32%; p = 0.034). Multivariate analysis showed major-mismatched transfusions to be significantly more often unsuccessful than identical transfusions (odds ratio [OR], 3.97; 95% confidence interval [CI], 1.52-10.39; p = 0.005). Using flow cytometry and fluorescent microscopy, it could be demonstrated that PLTs of subgroup A(1), significantly expressing A antigen on their surface, were rapidly cleared from the circulation of group O or B recipients. In contrast, major-mismatched transfusions of A(2) PLTs, expressing no detectable A antigen, were as successful as identical transfusions (OR, 1.13; 95% CI, 0.16-7.88; p = 0.90). CONCLUSION: These data clearly indicate that in children ABO major-mismatched PLT transfusions result in inferior transfusion efficacy, with the only exception of group A(2) PLTs. ABO minor-mismatched PLTs showed comparable efficacy to identical transfusions.
Resumo:
MicroRNAs (miRNA) are negative regulators of gene expression at the posttranscriptional level, which are involved in tumorigenesis. Two miRNAs, miR-15a and miR-16, which are located at chromosome 13q14, have been implicated in cell cycle control and apoptosis, but little information is available about their role in solid tumors. To address this question, we established a protocol to quantify miRNAs from laser capture microdissected tissues. Here, we show that miR-15a/miR-16 are frequently deleted or down-regulated in squamous cell carcinomas and adenocarcinomas of the lung. In these tumors, expression of miR-15a/miR-16 inversely correlates with the expression of cyclin D1. In non-small cell lung cancer (NSCLC) cell lines, cyclins D1, D2, and E1 are directly regulated by physiologic concentrations of miR-15a/miR-16. Consistent with these results, overexpression of these miRNAs induces cell cycle arrest in G(1)-G(0). Interestingly, H2009 cells lacking Rb are resistant to miR-15a/miR-16-induced cell cycle arrest, whereas reintroduction of functional Rb resensitizes these cells to miRNA activity. In contrast, down-regulation of Rb in A549 cells by RNA interference confers resistance to these miRNAs. Thus, cell cycle arrest induced by these miRNAs depends on the expression of Rb, confirming that G(1) cyclins are major targets of miR-15a/miR-16 in NSCLC. Our results indicate that miR-15a/miR-16 are implicated in cell cycle control and likely contribute to the tumorigenesis of NSCLC.
Resumo:
Persons with Down syndrome (DS) uniquely have an increased frequency of leukemias but a decreased total frequency of solid tumors. The distribution and frequency of specific types of brain tumors have never been studied in DS. We evaluated the frequency of primary neural cell embryonal tumors and gliomas in a large international data set. The observed number of children with DS having a medulloblastoma, central nervous system primitive neuroectodermal tumor (CNS-PNET) or glial tumor was compared to the expected number. Data were collected from cancer registries or brain tumor registries in 13 countries of Europe, America, Asia and Oceania. The number of DS children with each category of tumor was treated as a Poisson variable with mean equal to 0.000884 times the total number of registrations in that category. Among 8,043 neural cell embryonal tumors (6,882 medulloblastomas and 1,161 CNS-PNETs), only one patient with medulloblastoma had DS, while 7.11 children in total and 6.08 with medulloblastoma were expected to have DS. (p 0.016 and 0.0066 respectively). Among 13,797 children with glioma, 10 had DS, whereas 12.2 were expected. Children with DS appear to be specifically protected against primary neural cell embryonal tumors of the CNS, whereas gliomas occur at the same frequency as in the general population. A similar protection against neuroblastoma, the principal extracranial neural cell embryonal tumor, has been observed in children with DS. Additional genetic material on the supernumerary chromosome 21 may protect against embryonal neural cell tumor development.
Resumo:
The Jak-stat pathway is critical for cellular proliferation and is commonly found to be deregulated in many solid tumors as well as hematological malignancies. Such findings have spurred the development of novel therapeutic agents that specifically inhibit Jak2 kinase, thereby suppressing tumor cell growth. Tyrphostin AG490, the first described Jak2 inhibitor, displays poor pharmacology and requires high concentrations for anti-tumor activities. Our research group screened a small library of AG490 structural analogues and identified WP1130 as a potent inhibitor of Jak2 signaling. However, unlike AG490, WP1130 did not directly inhibit Jak2 kinase activity. Our results show that WP1130 induces rapid ubiquitination and subsequent re-localization of Jak2 into signaling incompetent aggresomes. In addition to Jak2, WP1130 also induces accumulation of other ubiquitinated proteins without inhibiting 20S proteasome activity. Further analysis of the mechanism of action of WP1130 revealed that WP1130 acts as a partly selective DUB inhibitor. It specifically inhibits the deubiquitinase activity of USP9x, USP5, USP14 and UCH37. WP1130 mediated inhibition of tumor-associated DUBs resulted in down-regulation of anti-apoptotic and up-regulation of pro-apoptotic proteins, such as MCL-1 and p53 respectively. Our results demonstrate that chemical modification of a previously described Jak2 inhibitor results in the unexpected discovery of a novel compound which acts as a DUB inhibitor, suppressing Jak-Stat signaling by a novel mechanism.
Resumo:
BACKGROUND: Chemotherapies of solid tumors commonly include 5-fluorouracil (5-FU). With standard doses of 5-FU, substantial inter-patient variability has been observed in exposure levels and treatment response. Recently, improved outcomes in colorectal cancer patients due to pharmacokinetically guided 5-FU dosing were reported. We aimed at establishing a rapid and sensitive method for monitoring 5-FU plasma levels in cancer patients in our routine clinical practice. METHODS: Performance of the Saladax My5-FU™ immunoassay was evaluated on the Roche Cobas® Integra 800 analyzer. Subsequently, 5-FU concentrations of 247 clinical plasma samples obtained with this assay were compared to the results obtained by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and other commonly used clinical analyzers (Olympus AU400, Roche Cobas c6000, and Thermo Fisher CDx90). RESULTS: The My-FU assay was successfully validated on the Cobas Integra 800 analyzer in terms of linearity, precision, accuracy, recovery, interference, sample carryover, and dilution integrity. Method comparison between the Cobas Integra 800 and LC-MS/MS revealed a proportional bias of 7% towards higher values measured with the My5-FU assay. However, when the Cobas Integra 800 was compared to three other clinical analyzers in addition to LC-MS/MS including 50 samples representing the typical clinical range of 5-FU plasma concentrations, only a small proportional bias (≤1.6%) and a constant bias below the limit of detection was observed. CONCLUSIONS: The My5-FU assay demonstrated robust and highly comparable performance on different analyzers. Therefore, the assay is suitable for monitoring 5-FU plasma levels in routine clinical practice and may contribute to improved efficacy and safety of commonly used 5-FU-based chemotherapies.
Resumo:
Natural killer cells may provide an important first line of defense against metastatic implantation of solid tumors. This antitumor function occurs during the intravascular and visceral lodgment phase of cancer dissemination, as demonstrated in small animal metastasis models. The role of the NK cell in controlling human tumor dissemination is more difficult to confirm, at least partially because of ethical restraints on experimental design. Nonetheless, a large number of solid tumor patient studies have demonstrated NK cell cytolysis of both autologous and allogeneic tumors.^ Of the major cancer therapeutic modalities, successful surgery in conjunction with other treatments offers the best possibility of cure. However, small animal experiments have demonstrated that surgical stress can lead to increased rates of primary tumor take, and increased incidence, size, and rapidity of metastasis development. Because the physiologic impact of surgical stress can also markedly impair perioperative antitumor immune function in humans, we examined the effect of surgical stress on perioperative NK cell cytolytic function in a murine preclinical model. Our studies demonstrated that hindlimb amputation led to a marked impairment of postoperative NK cell cytotoxicity. The mechanism underlying this process is complex and involves the postsurgical generation of splenic erythroblasts that successfully compete with NK cells for tumor target binding sites; NK cell-directed suppressor cell populations; and a direct impairment of NK cell recycling capacity. The observed postoperative NK cell suppression could be prevented by in vivo administration of pyrimidinone biologic response modifiers or by short term in vitro exposure of effector cells to recombinant Interleukin-2. It is hoped that insights gained from this research may help in the future development of NK cell specific perioperative immunotherapy relevant to the solid tumor patients undergoing cancer resection. ^
Resumo:
Loss of antiproliferative function of p53 by point mutation occurred frequently in various solid tumors. However, the genetic change of p53 by deletion or point mutation was a rare event (6%) in the cells of 49 AML patients analyzed by single-stranded conformation polymorphism and sequencing. Despite infrequent point mutation, abundant levels of p53 protein were detected in 75% of AML patients studied by immunoprecipitation with p53 specific antibodies. Furthermore, p53 protein in most cases had an altered conformation as analyzed by the reactivity to PAb240 which recognizes mutant p53; p53 protein in mitogen stimulated normal lymphocytes also had similar altered conformation. This altered conformation may be another mechanism for inactivation of p53 function in the growth stimulated environment. Some evidence indicated that posttranslational modification by phosphorylation may contribute to the conformational change of p53.^ Retinoblastoma (Rb) gene inactivation by deletion, rearrangement or mutation has also been implicated in many types of solid tumors. Our studies showed that absence or low levels of Rb protein were observed in more than 20% of AML patients at diagnosis, and the low levels of Rb correlated with shorter survival of patients. The absence of Rb protein was due to gene inactivation in some cases and to abnormal regulation of Rb expression in others. ^
Resumo:
Radioimmunotherapy (RIT) with i.v. administered radiolabeled IgG can selectively irradiate tumor cells in vivo. However, it only provides effective therapy for lymphomas. Intracompartmental RIT with radiolabeled human monoclonal IgM may allow curative treatment of solid tumors by increasing tumor deposition of radioactivity, reducing systemic toxicity and allowing repeated administration. This hypothesis was tested in nude mouse models with IgM radiolabeled with indium-111 $\rm(\sp{111}In)$ or yttrium-90 $\rm(\sp{90}Y).$ The use of two radioisotopes, $\rm\sp{111}In$ for imaging and $\rm\sp{90}Y$ for therapy, allow for more quantitative and cautious development of RIT.^ Radiolabled 2B12, an IgM reactive with human ovarian carcinomas was tested by i.v. and intraperitoneal (i.p.) administration in nude mice bearing i.p. nodules of a human ovarian carcinoma cell line (SKOV3 NMP2). Radiolabeled CR4E8, an IgM reactive with human squamous cell carcinomas was tested by i.v. and intralesional (i.l.) administration in nude mice bearing subcutaneous tumors of a human head and neck squamous cell carcinoma cell line (886). These two models were selected to test proof of concept. Radiolabeled irrelevant IgM (CH-1B9), and $\rm\sp{90}Y$-aggregate served as specificity controls. Biodistribution was performed by excising, weighing and then measuring the radioactivity of tumor and normal organs. Therapy was conducted with i.p. $\rm\sp{90}Y$-labeled 2B12 using both single and fractionated administration and with i.l. $\rm\sp{90}Y$-labeled CR4E8 using single administration. Mice were monitored for tumor response, survival and systemic toxicity.^ Intracompartmental administration of radiolabeled IgM produced immediate high and prolonged tumor deposition of radioactivity with low normal tissue uptake. In contrast, i.v. administration resulted in low tumor, but high liver and spleen uptake. Similar biodistributions were demonstrated for $\rm\sp{111}In$- and $\rm\sp{90}Y$-labeled IgM. Intraperitoneal therapy with $\rm\sp{90}Y$-labeled 2B12 increased survival by approximately 12 days for every 100 $\rm\mu Ci$ of activity without significant toxicity for single (0-300 $\rm\mu Ci)$ and fractionated (150-510 $\rm\mu Ci)$ administration. Intralesional therapy with $\rm\sp{90}Y$-labeled CR4E8 (150-400 $\rm\mu Ci)$ induced prolonged complete regressions. Significant local or systemic toxicity was not observed.^ Intracompartmental RIT with radiolabeled tumor-reactive human monoclonal IgM can selectively irradiate tumor cells. Intracompartmental radiolabled IgM can significantly extend the survival of treated mice with minimal toxicity. It deserves further development as a new cancer therapy. ^
Resumo:
Secondary acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) have been recognized as one of the most feared long-term complications of cancer therapy. The aim of this case-control study was to determine the prevalence of chromosomal abnormalities and family history of cancer among secondary AML/MDS cases and de novo AML/MDS controls. Study population were 332 MD Anderson Cancer Center patients who were registered between 1986 and 1994. Cases were patients who had a prior invasive cancer before diagnoses of AML/MDS and controls were de novo AML/MDS. Cases (166) and controls (166) were frequency matched on age $\pm$5 years, sex and year of diagnosis of leukemia. Cytogenetic data were obtained from the leukemia clinic database of MD Anderson Cancer Center and data on family history of cancer and other risk factors were abstracted from the patients' medical record. The distribution of AML and MDS among cases was 58% and 42% respectively and among controls 67% and 33% respectively. Prevalence of chromosomal abnormalities were observed more frequently among cases than controls. Reporting of family history of cancer were similar among both groups. Univariate analysis revealed an odds ratio (OR) of 2.8 (95% CI 1.5-5.4) for deletion of chromosome 7, 1.9 (95% CI 0.9-3.8) for deletion of chromosome 5, 2.3 (95% CI 0.8-6.2) for deletion of 5q, 2.0 (95% CI 1.0-4.2) for trisomy 8, 1.3 (95% CI 0.8-2.1) for chromosomal abnormalities other than chromosome 5 or 7 and 1.3 (95% CI 0.8-2.0) for family history of cancer in a first degree relative. The OR remained significant for deletion of chromosome 7 (2.3, 95% CI 1.1-4.8) after adjustment for age, alcohol, smoking, occupation related to chemical exposure and family history of cancer in a first degree relative. Of the 166 secondary AML/MDS patients 70% had a prior solid tumor and 30% experienced hematological cancers. The most frequent cancers were breast (21.1%), non-Hodgkin lymphoma (13.3%), Hodgkin's disease (10.2%), prostate (7.2%), colon (6%), multiple myeloma (3.6%) and testes (3.0%). The majority of these cancer patients were treated with chemotherapy or radiotherapy or both. Abnormalities of chromosome 5 or 7 were found to be more frequent in secondary AML/MDS patients with prior hematological cancer than patients with prior solid tumors. Median time to develop secondary AML/MDS was 5 years. However, secondary AML/MDS among patients who received chemotherapy and had a family history of cancer in a first degree relative occurred earlier (median 2.25 $\pm$ 0.9 years) than among patients without such family history (median 5.50 $\pm$ 0.18 years) (p $<$.03). The implication of exposure to chemotherapy among patients with a family history of cancer needs to be further investigated. ^
Resumo:
During the last decade, the development of anticancer therapies has focused on targeting neoplastic-related metabolism. Cancer cells display a variety of changes in their metabolism, which enable them to satisfy the high bioenergetic and biosynthetic demands for rapid cell division. One of the crucial alterations is referred to as the "Warburg effect", which involves a metabolic shift from oxidative phosphorylation towards the less efficient glycolysis, independent of the presence of oxygen. Although there are many examples of solid tumors having altered metabolism with high rates of glucose uptake and glycolysis, it was only recently reported that this phenomenon occurs in hematological malignancies. This review presents evidence that targeting the glycolytic pathway at different levels in hematological malignancies can inhibit cancer cell proliferation by restoring normal metabolic conditions. However, to achieve cancer regression, high concentrations of glycolytic inhibitors are used due to limited solubility and biodistribution, which may result in toxicity. Besides using these inhibitors as monotherapies, combinatorial approaches using standard chemotherapeutic agents could display enhanced efficacy at eradicating malignant cells. The identification of the metabolic enzymes critical for hematological cancer cell proliferation and survival appears to be an interesting new approach for the targeted therapy of hematological malignancies.
Resumo:
Members of the WD-repeat protein interacting with phosphoinositides (WIPI) family are phosphatidylinositol 3-phosphate (PI3P) effectors that are essential for the formation of autophagosomes. Autophagosomes, unique double-membraned organelles, are characteristic for autophagy, a bulk degradation mechanism with cytoprotective and homeostatic function. Both, WIPI-1 and WIPI-2 are aberrantly expressed in several solid tumors, linking these genes to carcinogenesis. We now found that the expression of WIPI-1 was significantly reduced in a large cohort of 98 primary acute myeloid leukemia (AML) patient samples (complex karyotypes; t(8;21); t(15,17); inv(16)). In contrast, the expression of WIPI-2 was only reduced in acute promyelocytic leukemia (APL), a distinct subtype of AML (t(15,17)). As AML cells are blocked in their differentiation, we tested if the expression levels of WIPI-1 and WIPI-2 increase during all-trans retinoic acid (ATRA)-induced neutrophil differentiation of APL. According to the higher WIPI-1 expression in granulocytes compared with immature blast cells, WIPI-1 but not WIPI-2 expression was significantly induced during neutrophil differentiation of NB4 APL cells. Interestingly, the induction of WIPI-1 expression was dependent on the transcription factor PU.1, a master regulator of myelopoiesis, supporting our notion that WIPI-1 expression is reduced in AML patients lacking proper PU-1 activity. Further, knocking down WIPI-1 in NB4 cells markedly attenuated the autophagic flux and significantly reduced neutrophil differentiation. This result was also achieved by knocking down WIPI-2, suggesting that both WIPI-1 and WIPI-2 are functionally required and not redundant in mediating the PI3P signal at the onset of autophagy in NB4 cells. In line with these data, downregulation of PI3KC3 (hVPS34), which generates PI3P upstream of WIPIs, also inhibited neutrophil differentiation. In conclusion, we demonstrate that both WIPI-1 and WIPI-2 are required for the PI3P-dependent autophagic activity during neutrophil differentiation, and that PU.1-dependent WIPI-1 expression is significantly repressed in primary AML patient samples and that the induction of autophagic flux is associated with neutrophil differentiation of APL cells.
Intratumoral hypoxia as the genesis of genetic instability and clinical prognosis in prostate cancer
Resumo:
Intratumoral hypoxia is prevalent in many solid tumors and is a marker of poor clinical prognosis in prostate cancer. The presence of hypoxia is associated with increased chromosomal instability, gene amplification, downregulation of DNA damage repair pathways, and altered sensitivity to agents that damage DNA. These genomic changes could also lead to oncogene activation or tumor suppressor gene inactivation during prostate cancer progression. We review here the concept of repair-deficient hypoxic tumor cells that can adapt to low oxygen levels and acquire an aggressive "unstable mutator" phenotype. We speculate that hypoxia-induced genomic instability may also be a consequence of aberrant mitotic function in hypoxic cells, which leads to increased chromosomal instability and aneuploidy. Because both hypoxia and aneuploidy are prognostic factors in prostate cancer, a greater understanding of these biological states in prostate cancer may lead to novel prognostic and predictive tests and drive new therapeutic strategies in the context of personalized cancer medicine.
Resumo:
Preclinical and clinical studies have indicated that somatostatin receptor (sst)-expressing tumors demonstrate higher uptake of radiolabeled sst antagonists than of sst agonists. In 4 consecutive patients with advanced neuroendocrine tumors, we evaluated whether treatment with (177)Lu-labeled sst antagonists is feasible. METHODS After injection of approximately 1 GBq of (177)Lu-DOTA-[Cpa-c(DCys-Aph(Hor)-DAph(Cbm)-Lys-Thr-Cys)-DTyr-NH2] ((177)Lu-DOTA-JR11) and (177)Lu-DOTATATE, 3-dimensional voxel dosimetry analysis based on SPECT/CT was performed. A higher tumor-to-organ dose ratio for (177)Lu-DOTA-JR11 than for (177)Lu-DOTATATE was the prerequisite for treatment with (177)Lu-DOTA-JR11. RESULTS Reversible minor adverse effects of (177)Lu-DOTA-JR11 were observed. (177)Lu-DOTA-JR11 showed a 1.7-10.6 times higher tumor dose than (177)Lu-DOTATATE. At the same time, the tumor-to-kidney and tumor-to-bone marrow dose ratio was 1.1-7.2 times higher. All 4 patients were treated with (177)Lu-DOTA-JR11, resulting in partial remission in 2 patients, stable disease in 1 patient, and mixed response in the other patient. CONCLUSION Treatment of neuroendocrine tumors with radiolabeled sst antagonists is clinically feasible and may have a significant impact on peptide receptor radionuclide therapy.
Resumo:
Autophagy assures cellular homeostasis, and gains increasing importance in cancer, where it impacts on carcinogenesis, propagation of the malignant phenotype and development of resistance. To date, its tissue-based analysis by immunohistochemistry remains poorly standardized. Here we show the feasibility of specifically and reliably assessing the autophagy markers LC3B and p62 (SQSTM1) in formalin fixed and paraffin embedded human tissue by immunohistochemistry. Preceding functional experiments consisted of depleting LC3B and p62 in H1299 lung cancer cells with subsequent induction of autophagy. Western blot and immunofluorescence validated antibody specificity, knockdown efficiency and autophagy induction prior to fixation in formalin and embedding in paraffin. LC3B and p62 antibodies were validated on formalin fixed and paraffin embedded cell pellets of treated and control cells and finally applied on a tissue microarray with 80 human malignant and non-neoplastic lung and stomach formalin fixed and paraffin embedded tissue samples. Dot-like staining of various degrees was observed in cell pellets and 18/40 (LC3B) and 22/40 (p62) tumors, respectively. Seventeen tumors were double positive for LC3B and p62. P62 displayed additional significant cytoplasmic and nuclear staining of unknown significance. Interobserver-agreement for grading of staining intensities and patterns was substantial to excellent (kappa values 0.60 - 0.83). In summary, we present a specific and reliable IHC staining of LC3B and p62 on formalin fixed and paraffin embedded human tissue. Our presented protocol is designed to aid reliable investigation of dysregulated autophagy in solid tumors and may be used on large tissue collectives.