942 resultados para adsorption isotherms


Relevância:

60.00% 60.00%

Publicador:

Resumo:

2-Mercaptobenzothiazole loaded on previously treated clay was prepared, characterized and used for sorption and preconcentration of Hg(II), Pb(II), Zn(II), Cd(II), Cu(II) and Mn(II) from an aqueous solution. The support used was a natural clay previously treated with sulphuric acid solution. Adsorption isotherms of metal ions from aqueous solutions as function of pH were studied at 298 K. Conditions for quantitative retention and elution were established for each metal by batch and column methods. The chemically treated clay was very selective to Hg(II) in solution in which Zn(II), Cd(II), Pb(II), Cu(II) and Mn(II) were also present. © 1995.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Catalytic activity and selectivity of niobate-based nanostructured materials were investigated. Dry methane reforming (DMR) and ethylene homologation reaction (EHR) were selected as test reactions. KSr 2Nb5O15, Sr2NaNb5O 15 and NaSr2(NiNb4)O15 δ niobate powders were prepared by the high energy ball milling method and calcined in a reductor atmosphere. N2 adsorption isotherms, X-ray diffraction and infrared spectroscopy characterization was performed. Hydrogen pretreated niobates showed from low to moderate catalytic initial activity in DMR's test, nevertheless the materials were deactivated rapidly and the kinetic parameters associated to deactivation were estimated. Otherwise, non-treated catalysts showed a high initial activity in EHR's test and KSr2Nb 5O15 catalyst requires 24 h to the total deactivation with a high selectivity to form propylene. A reaction mechanism to the propylene formation is discussed. © 2012 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The development of gas sensors with innovative designs and advanced functional materials has attracted considerable scientific interest given their potential for addressing important technological challenges. This work presents new insight towards the development of high-performance p-type semiconductor gas sensors. Gas sensor test devices, based on copper (II) oxide (CuO) with innovative and unique designs (urchin-like, fiber-like, and nanorods), are prepared by a microwave-assisted synthesis method. The crystalline composition, surface area, porosity, and morphological characteristics are studied by X-ray powder diffraction, nitrogen adsorption isotherms, field-emission scanning electron microscopy and high-resolution transmission electron microscopy. Gas sensor measurements, performed simultaneously on multiple samples, show that morphology can have a substantial influence on gas sensor performance. An assembly of urchin-like structures is found to be most effective for hydrogen detection in the range of parts-per-million at 200 °C with 300-fold larger response than the previously best reported values for semiconducting CuO hydrogen gas sensors. These results show that morphology plays an important role in the gas sensing performance of CuO and can be effectively applied in the further development of gas sensors based on p-type semiconductors. High-performance gas sensors based on CuO hierarchical morphologies with in situ gas sensor comparison are reported. Urchin-like morphologies with high hydrogen sensitivity and selectivity that show chemical and thermal stability and low temperature operation are analyzed. The role of morphological influences in p-type gas sensor materials is discussed. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The biosorption of Cd(II) and Pb(II) ions on biomass and exopolysaccharide (EPS) produced by Colletotrichum sp. fungus has been investigated as a function of contact time, initial pH, initial metal ion concentration, and initial adsorbent concentration in a batch system. Adsorption equilibrium was described by Freundlich and Langmuir isotherms. Adsorption was characterized through granulometry, SEM and EDX analysis. Then, studies were performed to regenerate the adsorbent. Biosorption of metals by biomass and EPS were best described by the Langmuir and Freundlich isotherm, respectively. Results of thermodynamic investigations showed that adsorption reactions were spontaneous (ΔG° < 0), exothermal, and mainly physical. The EPS was able to remove 79 and 98% of cadmium and lead, respectively, and the biomass removed 85 and 84% of cadmium and lead, respectively, in a solution with initial concentration 100 mg L-1, and the four adsorption-desorption cycles of all adsorbents showed up with great regenerative capacity and relative stability after these four cycles, the high potential of these biological materials in sorption has been shown. © 2013 Copyright Balaban Desalination Publications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Engenharia e Ciência de Alimentos - IBILCE

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Química - IBILCE

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)