775 resultados para acrylonitrile butadiene(NBR) rubbers


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cure characteristics and mechanical properties of styrene butadiene rubber reclaimed rubber blends were studied. The blends showed improved processability, as indicated by the minimum torque values. Cure characteristics like minimum torque, (maximum-minimum) torque, cure time and cure rate decreased in the presence of reclaimed rubber. Tensile strength, tear strength, elongation at break were higher for blends. Resilience decreased with reclaim content. Compression set and abrasion loss were higher in the blends.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanoscale silica was synthesized by precipitation method using sodium silicate and dilute hydrochloric acid under controlled conditions. The synthesized silica was characterized by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), BET adsorption and X-Ray Diffraction (XRD). The particle size of silica was calculated to be 13 nm from the XRD results and the surface area was found to be 295 m2/g by BET method. The performance of this synthesized nanosilica as a reinforcing filler in natural rubber (NR) compound was investigated. The commercial silica was used as the reference material. Nanosilica was found to be effective reinforcing filler in natural rubber compound. Filler-matrix interaction was better for nanosilica than the commercial silica. The synthesized nanosilica was used in place of conventional silica in HRH (hexamethylene tetramine, resorcinol and silica) bonding system for natural rubber and styrene butadiene rubber / Nylon 6 short fiber composites. The efficiency of HRH bonding system based on nanosilica was better. Nanosilica was also used as reinforcing filler in rubber / Nylon 6 short fiber hybrid composite. The cure, mechanical, ageing, thermal and dynamic mechanical properties of nanosilica / Nylon 6 short fiber / elastomeric hybrid composites were studied in detail. The matrices used were natural rubber (NR), nitrile rubber (NBR), styrene butadiene rubber (SBR) and chloroprene rubber (CR). Fiber loading was varied from 0 to 30 parts per hundred rubber (phr) and silica loading was varied from 0 to 9 phr. Hexa:Resorcinol:Silica (HRH) ratio was maintained as 2:2:1. HRH loading was adjusted to 16% of the fiber loading. Minimum torque, maximum torque and cure time increased with silica loading. Cure rate increased with fiber loading and decreased with silica content. The hybrid composites showed improved mechanical properties in the presence of nanosilica. Tensile strength showed a dip at 10 phr fiber loading in the case of NR and CR while it continuously increased with fiber loading in the case of NBR and SBR. The nanosilica improved the tensile strength, modulus and tear strength better than the conventional silica. Abrasion resistance and hardness were also better for the nanosilica composites. Resilience and compression set were adversely affected. Hybrid composites showed anisotropy in mechanical properties. Retention in ageing improved with fiber loading and was better for nanosilica-filled hybrid composites. The nanosilica also improved the thermal stability of the hybrid composite better than the commercial silica. All the composites underwent two-step thermal degradation. Kinetic studies showed that the degradation of all the elastomeric composites followed a first-order reaction. Dynamic mechanical analysis revealed that storage modulus (E’) and loss modulus (E”) increased with nanosiica content, fiber loading and frequency for all the composites, independent of the matrix. The highest rate of increase was registered for NBR rubber.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research project explores the utilization of cardanol in various capacities for rubber processing. Cardanol is a phenol with a long side chain in the meta position of the benzene ring. It is obtained by the vacuum distillation of cashew Hut shell liquid (CNSL) which is a cheap agro-byproduct. In this study, the plasticizer property of cardanol was investigated in silica filled and HAF black filled NR, NBR, EPDM and CR by comparing cure characteristics and mechanical properties of vulcanizates containing conventional plasticizer with those containing cardanol as plasticizer. The co-activator, antioxidant and accelerator properties were investigated in gum samples of NR, NBR, EPDM and CR by comparing the properties of vulcanizates which contain conventional co-activator, antioxidant and accelerator with those in which each of them was replaced by cardanol. The general effectiveness of cardanol was investigated by determination of cure time , measurement of physical and mechanical properties, ageing studies, crosslink density, extractability, FTIR spectra, TGA etc.The results show that cardanol can be a substitute for aromatic oil in both silica filled and HAF black filled NR. Again, it can replace dioctyl phthalate in both silica filled and HAF black filled NBR. Similarly, cardanol Can replace naphthenic oil in silica filled as well as HAF black filled EPDM and CR. The cure characteristics and mechanical properties are comparable in all the eight cases. The co-activator property of cardanol is comparable to stearic acid in all the four rubbers. The cure characteristics and mechanical properties in this case are also comparable. The antioxidant ,property of cardanol is comparable to TQ in all the four rubbers. The antioxidant property of cardanol is comparable to TQ in all the four case of NBR and EPDM.The accelerator property of cardarlol is comparable with CBS in the case of NBR and EPDM. No accelerator property is observed in the case of NR. The accelerator property of cardanol in CR is not negligible when compared with TMTD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The distribution of curing agents and fillers in the constituents of an elastomer blend is an important factor which determines the curing behaviour and vulcanizate properties of the blend. The distribution of curatives and fillers largely depends on the nature of elastomers. The curatives tend to migrate preferentially to the rubber of higher unsaturation and/or higher polarity, and reinforcing fillers tend to get distributed in the low viscosity phase, resulting in inferior mechanical properties of the blends. The thesis suggests several methods for improving mechanical properties of blends like NBR/butyl, NR/butyl, NBR/EPDM and NR/.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The current research investigates the possibility of using unmodified and modified nanokaolin, multiwalled carbon nanotube (MWCNT) and graphene as fillers to impart enhancement in mechanical, thermal, and electrical properties to the elastomers. Taking advantage of latex blending method, nanoclay, MWCNT and graphene dispersions, prepared by ultra sound sonication are dispersed in polymer latices. The improvement in material properties indicated better interaction between filler and the polymer.MWCNT and graphene imparted electrical conductivity with simultaneous improvement in mechanical properties. Layered silicates prepared by microwave method also significantly improve the mechanical properties of the nanocomposites. The thesis entitled ‘Studies on the use of Nanokaolin, MWCNT and Graphene in NBR and SBR’ consists of ten chapters. The first chapter is a concise introduction of nanocomposites, nanofillers, elastomeric matrices and applications of polymer nanocomposites. The state-of-art research in elastomer based nanocomposites is also presented. At the end of this chapter the main objectives of the work are mentioned. Chapter 2 outlines the specifications of various materials used, details of experimental techniques employed for preparing and characterizing nanocomposites. Chapter3 includes characterization of the nanofillers, optimsation of cure time of latex based composites and the methods used for the preparation of latex based and dry rubber based nanocomposites. Chapter4 presents the reinforcing effect of the nanofillers in XNBR latex and the characterization of the nanocomposites. Chapter5 comprises the effect of nanofillers on the properties of SBR latex and their characterization Chapter 6 deals with the study of cure characteristics, mechanical and thermal properties and the characterization of NBR based nanocomposites. Chapter7 is the microwave studies of MWCNT and graphene filled elastomeric nanocomposites. Chapter 8 gives details of the preparation of layered silicates, their characterization and use in different elastomeric matrices. Chapter 9 is the study of mechanical properties of nanoclay incorporated nitrile gloves .Chapter 10 presents the summary and conclusions of the investigation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Results obtained in a pilot-scale unit designed for COD removal and p-TBC (p-tert-butylcatechol) recovery from a butadiene washing stream (pH 14, 200,000 mg COD L(-1), highly toxic) at a petrochemical industry are presented. By adding H(3)PO(4), phase separation is achieved and p-TBC is successfully recovered (88 g L(-1) of washing stream). Information (time for phase separation and organic phase characterization) was gathered for designing a future industrial unit. The estimated heat generation rate was 990 kJ min(-1) and 15 min were enough to promote phase separation for a liquid column of approximately 1.15 m.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Measurements of the glass transition temperature (Tg) and free volume behaviour of poly(acrylonitrile) (PAN) and PAN/lithium triflate (LiTf), with varying salt composition from 10 to 66 wt% LiTf, were made by positron annihilation lifetime spectroscopy (PALS). Addition of salt from 10 to 45 wt% LiTf resulted in an increase in the mean free volume cavity size at room temperature (r.t.) as measured by the orthoPositronium (oPs) pickoff lifetime, τ3, with little change in relative concentration of free volume sites as measured by oPs pickoff intensity, I3. The region from 45 to 66 wt% salt displayed no variation in relative free volume cavity size and concentration. This salt concentration range (45 wt%<[LiTf]<66 wt%) corresponds to a region of high ionic conductivity of order 10−5 to 10−6 S cm−1 at Tg as measured by PALS. A percolation phenomenon is postulated to describe conduction in this composition region. Salt addition was shown to lower the Tg as measured by PALS; Tg was 115°C for PAN and 85°C for PAN/66 wt% LiTf. The Tg and free volume behaviour of this polymer-in-salt electrolyte (PISE) was compared to a poly(ether urethane)/LiClO4 where the polymer is the major component, i.e. traditional solid polymer electrolyte (SPE). In contrast to the PISE, the Tg of the SPE was shown to increase with increasing salt concentration from 5.3 to 15.9 wt%. The relative free volume cavity size and concentration at r.t. were shown to decrease with increasing salt concentration. Ionic conductivity in this SPE was of order 10−5 S cm−1 at r.t., which is over 60°C above Tg, 10−8 S cm−1 at 25°C above Tg, and conductivity was not measurable at Tg.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of emulsification on the styrene-butadiene-styrene (SBS) chemically modified bitumens (CMBs) is studied by conventional tests, differential scanning calorimetry (DSC) and fourier transform infrared (FTIR) spectroscopy. Compared to CMBs, modified bitumen emulsion residues (MBERs) exhibit higher temperature susceptibility, inferior resistant to cracking and deformation, lower elastic recovery and storage stability whereas these properties are improved substantially relative to base bitumens. DSC results show that the thermostability of CMBs decreased slightly after emulsification which indicate the emulsification exerts very little effect on the thermal property of CMBs. The FTIR results do not indicate any chemical reaction exists on CMBs during the emulsification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The current study focuses on giving a basic understanding of tubular graphene sheets or carbon nanotubes (CNTs) and points towards their role in fabricating elastomer composites. Since the properties and the performance of CNT reinforced elastomer composites predominantly depend on the rate of dispersion of fillers in the matrix, the physical and chemical interaction of polymer chains with the nanotubes, crosslinking chemistry of rubbers and the orientation of the tubes within the matrix, here, a thorough study of these topics is carried out. For this, various techniques of composite manufacturing such as pulverization, heterocoagulation, freeze drying, etc. are discussed by emphasizing the dispersion and alignment of CNTs in elastomers. The importance of the functionalization technique as well as the confinement effect of nanotubes in elastomer media is derived. In a word, this article is aimed exclusively at addressing the prevailing problems related to the CNT dispersion in various rubber matrices, the solutions to produce advanced high-performance elastomeric composites and various fields of applications of such composites, especially electronics. Special attention has also been given to the non-linear viscoelasticity effects of elastomers such as the Payne effect, Mullin's effect and hysteresis in regulating the composite properties. Moreover, the current challenges and opportunities for efficiently translating the extraordinary electrical properties of CNTs to rubbery matrices are also dealt with.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The load bearing capacity of aging reinforced concrete structures, such as bridges, is increasingly extended with the use of Carbon Fibre Reinforced Polymer (CFRP). Premature failure, which is attributed to the rigid behaviour of the bonding agent (epoxy resin) and the high stresses at the interface region, can occur because of the debonding of CFRP sheets from host surfaces. To overcome the debonding issue, the epoxy resin is modified by different reactive liquid polymers to improve its toughness, flexibility, adhesion, and impact resistance. This study reports the usage of two reactive liquid polymers, namely, liquid Carboxyl-Terminated Butadiene-Acrylonitrile (CTBN) and liquid Amine-Terminated Butadiene-Acrylonitrile (ATBN), to improve the mechanical properties of the commercially available MBrace saturant resin when added to a ratio of 100:30 by weight. The neat and modified epoxies were analysed using the Dynamic Mechanical Thermal Analysis (DMTA) to determine and compare the storage modulus and glass transition temperatures of these materials. Moreover, the bonding strength of neat and modified epoxies was evaluated through single-lap shear tests on CFRP sheets bonded to concrete prisms. The results indicate that the modified resins exhibited improved ductility and toughness and became reasonably flexible compared with the neat epoxy resin. The improved properties will help delay the premature debonding failure in CFRP retrofitted concrete members.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A globalização, a busca pela qualidade e produtividade, a competitividade do mercado, fizeram com que a Construção civil iniciasse a busca pela melhoria nos processos, visando diminuir o desperdício e as perdas. Por outro lado, as empresas construtoras têm buscado a certificação dos seus sistemas de qualidade, o mesmo ocorrendo, ainda que de forma incipiente, com os fornecedores da indústria da construção civil. Considerando a cadeia produtiva deste setor, os laboratórios de ensaios aparecem ensaiando os produtos que buscam a certificação, realizando controle tecnológico nas obras, caracterizando os materiais utilizados, entre outros, mostrando assim a sua importância tanto para os fornecedores quanto para os construtores. Para garantir melhorias no setor da construção civil, não é importante apenas a implantação de sistemas da qualidade nas empresas construtoras, mas também é de grande relevância a certificação de produtos utilizados. Para tanto, é necessário a existência de laboratórios credenciados que desempenhem o papel de ensaiar o produto. A necessidade da existência de laboratórios credenciados é visível no país, para garantir aspectos referentes à confiabilidade e confidencialidade dos resultados, além da rastreabilidade dos padrões utilizados. Também é importante que a execução dos ensaios seja feita por pessoal treinado e qualificado, com utilização de procedimentos permanentemente revisados e atualizados. O objetivo deste trabalho é levantar as principais dificuldades e não-conformidades vivenciadas pelos laboratórios de ensaios de construção civil para alcançar o credenciamento, identificando-as através de questionários. Este diagnóstico pretende apontar diretrizes que viabilizem o processo de credenciamento de laboratórios de ensaios de construção civil de forma a facilitar a disseminação desta prática em todo o país.