998 resultados para Zr base bulk amorphous alloy


Relevância:

40.00% 40.00%

Publicador:

Resumo:

"Contract AT(11-1)-229."

Relevância:

40.00% 40.00%

Publicador:

Resumo:

To capitalise on the strengthening potential of zirconium as a potent grain refiner for magnesium alloys, the mechanisms of adding zirconium to magnesium and its subsequent grain refining action need to be understood. Using a Mg-33.3Zr master alloy (Zirmax supplied by Magnesium Elektron Ltd) as a zirconium alloying additive, the influence of different alloying conditions on the dissolution of zirconium in magnesium was investigated. It was found that owing to the highly alloyable microstructure of Zirmax, the dissolution of zirconium was generally complete within a few minutes in the temperature range 730 to 780degreesC. Prolonging and/or intensifying stirring were found to have no conspicuous influence on further enhancing the dissolution of zirconium. In all cases studied, the average grain size increased with increasing holding time at temperature while the total zirconium content decreased. The finest grain structure and highest total zirconium content corresponded to sampling immediately after stirring. Pick up of iron by molten magnesium from the mild steel crucibles used for melting and holding, was significantly delayed or avoided in the temperature range 730 to 780degreesC by coating the crucibles with boron nitride. It is therefore feasible to conduct zirconium alloying at 730degreesC without the need of a considerable excess of Zirmax addition using a properly coated or lined steel crucible.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Pack aluminide coating is a useful method for conferring oxidation resistance on nickel-base superalloys. Nominally, these coatings have a matrix composed of a Ni-Al based B2-type phase (commonly denoted as Β). However, following high-temperature exposure in oxidative envi-ronments, aluminum is depleted from the coating. Aluminum depletion in turn, leads to de-stabilization of the Β phase, resulting in the formation of a characteristic lathlike Β-derivative microstructure. This article presents a transmission electron microscopy study of the formation of the lathlike Β-derivative microstructure using bulk nickel aluminides as model alloys. In the bulk nickel aluminides, the lathlike microstructure has been found to correspond to two distinct components: L10-type martensite and a new Β derivative. The new Β derivative is characterized and the conditions associated with the presence of this feature are identified and compared with those leading to the formation of the L10 martensitic phase. © 1995 The Minerals, Metals & Material Society.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Zr-Excel alloy (Zr-3.5Sn-0.8Nb-0.8Mo) is a dual phase (α + β) alloy in the as-received pressure tube condition. It has been proposed to be the pressure tube candidate material for the Generation-IV CANDU-Supercritical Water Reactor (CANDU-SCWR). In this dissertation, the effects of heavy ion irradiation, deformation and heat treatment on the microstructures of the alloy were investigated to enable us to have a better understanding of the potential in-reactor performance of this alloy. In-situ heavy ion (1 MeV) irradiation was performed to study the nucleation and evolution of dislocation loops in both α- and β-Zr. Small and dense type dislocation loops form under irradiation between 80 and 450 °C. The number density tends to saturate at ~ 0.1 dpa. Compared with the α-Zr, the defect yield is much lower in β-Zr. The stabilities of the metastable phases (β-Zr and ω-Zr) and the thermal-dynamically equilibrium phase, fcc Zr(Mo, Nb)2, under irradiation were also studied at different temperatures. Chemi-STEM elemental mapping was carried out to study the elemental redistribution caused by irradiation. The stability of these phases and the elemental redistribution are strongly dependent on irradiation temperature. In-situ time-of-flight neutron diffraction tensile and compressive tests were carried out at different temperatures to monitor lattice strain evolutions of individual grain families during these tests. The β-Zr is the strengthening phase in this alloy in the as-received plate material. Load is transferred to the β-Zr after yielding of the α-Zr grains. The temperature dependence of static strain aging and the yielding sequence of the individual grain families were discussed. Strong tensile/compressive asymmetry was observed in the {0002} grain family at room temperature. The microstructures of the sample deformed at 400 °C and the samples only subjected to heat treatment at the same temperature were characterized with TEM. Concentration of β phase stabilizers in the β grain and the morphology of β grain have significant effect on the stability of β- and ω-Zr under thermal treatment. Applied stress/strain enhances the decomposition of isothermal ω phase but suppresses α precipitation inside the β grains at high temperature. An α → ω/ZrO phase transformation was observed in the thin foils of Zr-Excel alloy and pure Zr during in-situ heating at 700 °C in TEM.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An effect of alloying element content on mechanical properties and precipitate formation in Mg-RE alloys was studied for Mg-8Gd-4Y- 1Zn-0.4Zr (wt%) and Mg-10Gd-5Y-1.8Zn-0.4Zr (wt%). It is shown that small variations in the alloying element concentration can be used to manipulate the alloy microstructure and precipitate formation towards eliminating the asymmetry (tension/compression) and anisotropy of yield stress.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inclusions of sp-hybridised, trans-polyacetylene [trans-(CH)x] and poly(p-phenylene vinylene) (PPV) chains are revealed using resonant Raman scattering (RRS) investigation of amorphous hydrogenated carbon (a-C:H) films in the near IR – UV range. The RRS spectra of trans-(CH)x core Ag modes and the PPV CC-H phenylene mode are found to transform and disperse as the laser excitation energy ћωL is increased from near IR through visible to UV, whereas sp-bonded inclusions only become evident in UV. This is attributed to ћωL probing of trans-(CH)x chain inhomogeneity and the distribution of chains with varying conjugation length; for PPV to the resonant probing of phelynene ring disorder; and for sp segments, to ћωL probing of a local band gap of end-terminated polyynes. The IR spectra analysis confirmed the presence of sp, trans-(CH)x and PPV inclusions. The obtained RRS results for a-C:H denote differentiation between the core Ag trans-(CH)x modes and the PPV phenylene mode. Furthermore, it was found that at various laser excitation energies the changes in Raman spectra features for trans-(CH)x segments included in an amorphous carbon matrix are the same as in bulk trans-polyacetylene. The latter finding can be used to facilitate identification of trans-(CH)x in the spectra of complex carbonaceous materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Queensland University of Technology (QUT) allows the presentation of a thesis for the Degree of Doctor of Philosophy in the format of published or submitted papers, where such papers have been published, accepted or submitted during the period of candidature. This thesis is composed of Seven published/submitted papers and one poster presentation, of which five have been published and the other two are under review. This project is financially supported by the QUTPRA Grant. The twenty-first century started with the resurrection of lignocellulosic biomass as a potential substitute for petrochemicals. Petrochemicals, which enjoyed the sustainable economic growth during the past century, have begun to reach or have reached their peak. The world energy situation is complicated by political uncertainty and by the environmental impact associated with petrochemical import and usage. In particular, greenhouse gasses and toxic emissions produced by petrochemicals have been implicated as a significant cause of climate changes. Lignocellulosic biomass (e.g. sugarcane biomass and bagasse), which potentially enjoys a more abundant, widely distributed, and cost-effective resource base, can play an indispensible role in the paradigm transition from fossil-based to carbohydrate-based economy. Poly(3-hydroxybutyrate), PHB has attracted much commercial interest as a plastic and biodegradable material because some its physical properties are similar to those of polypropylene (PP), even though the two polymers have quite different chemical structures. PHB exhibits a high degree of crystallinity, has a high melting point of approximately 180°C, and most importantly, unlike PP, PHB is rapidly biodegradable. Two major factors which currently inhibit the widespread use of PHB are its high cost and poor mechanical properties. The production costs of PHB are significantly higher than for plastics produced from petrochemical resources (e.g. PP costs $US1 kg-1, whereas PHB costs $US8 kg-1), and its stiff and brittle nature makes processing difficult and impedes its ability to handle high impact. Lignin, together with cellulose and hemicellulose, are the three main components of every lignocellulosic biomass. It is a natural polymer occurring in the plant cell wall. Lignin, after cellulose, is the most abundant polymer in nature. It is extracted mainly as a by-product in the pulp and paper industry. Although, traditionally lignin is burnt in industry for energy, it has a lot of value-add properties. Lignin, which to date has not been exploited, is an amorphous polymer with hydrophobic behaviour. These make it a good candidate for blending with PHB and technically, blending can be a viable solution for price and reduction and enhance production properties. Theoretically, lignin and PHB affect the physiochemical properties of each other when they become miscible in a composite. A comprehensive study on structural, thermal, rheological and environmental properties of lignin/PHB blends together with neat lignin and PHB is the targeted scope of this thesis. An introduction to this research, including a description of the research problem, a literature review and an account of the research progress linking the research papers is presented in Chapter 1. In this research, lignin was obtained from bagasse through extraction with sodium hydroxide. A novel two-step pH precipitation procedure was used to recover soda lignin with the purity of 96.3 wt% from the black liquor (i.e. the spent sodium hydroxide solution). The precipitation process is presented in Chapter 2. A sequential solvent extraction process was used to fractionate the soda lignin into three fractions. These fractions, together with the soda lignin, were characterised to determine elemental composition, purity, carbohydrate content, molecular weight, and functional group content. The thermal properties of the lignins were also determined. The results are presented and discussed in Chapter 2. On the basis of the type and quantity of functional groups, attempts were made to identify potential applications for each of the individual lignins. As an addendum to the general section on the development of composite materials of lignin, which includes Chapters 1 and 2, studies on the kinetics of bagasse thermal degradation are presented in Appendix 1. The work showed that distinct stages of mass losses depend on residual sucrose. As the development of value-added products from lignin will improve the economics of cellulosic ethanol, a review on lignin applications, which included lignin/PHB composites, is presented in Appendix 2. Chapters 3, 4 and 5 are dedicated to investigations of the properties of soda lignin/PHB composites. Chapter 3 reports on the thermal stability and miscibility of the blends. Although the addition of soda lignin shifts the onset of PHB decomposition to lower temperatures, the lignin/PHB blends are thermally more stable over a wider temperature range. The results from the thermal study also indicated that blends containing up to 40 wt% soda lignin were miscible. The Tg data for these blends fitted nicely to the Gordon-Taylor and Kwei models. Fourier transform infrared spectroscopy (FT-IR) evaluation showed that the miscibility of the blends was because of specific hydrogen bonding (and similar interactions) between reactive phenolic hydroxyl groups of lignin and the carbonyl group of PHB. The thermophysical and rheological properties of soda lignin/PHB blends are presented in Chapter 4. In this chapter, the kinetics of thermal degradation of the blends is studied using thermogravimetric analysis (TGA). This preliminary investigation is limited to the processing temperature of blend manufacturing. Of significance in the study, is the drop in the apparent energy of activation, Ea from 112 kJmol-1 for pure PHB to half that value for blends. This means that the addition of lignin to PHB reduces the thermal stability of PHB, and that the comparative reduced weight loss observed in the TGA data is associated with the slower rate of lignin degradation in the composite. The Tg of PHB, as well as its melting temperature, melting enthalpy, crystallinity and melting point decrease with increase in lignin content. Results from the rheological investigation showed that at low lignin content (.30 wt%), lignin acts as a plasticiser for PHB, while at high lignin content it acts as a filler. Chapter 5 is dedicated to the environmental study of soda lignin/PHB blends. The biodegradability of lignin/PHB blends is compared to that of PHB using the standard soil burial test. To obtain acceptable biodegradation data, samples were buried for 12 months under controlled conditions. Gravimetric analysis, TGA, optical microscopy, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), FT-IR, and X-ray photoelectron spectroscopy (XPS) were used in the study. The results clearly demonstrated that lignin retards the biodegradation of PHB, and that the miscible blends were more resistant to degradation compared to the immiscible blends. To obtain an understanding between the structure of lignin and the properties of the blends, a methanol-soluble lignin, which contains 3× less phenolic hydroxyl group that its parent soda lignin used in preparing blends for the work reported in Chapters 3 and 4, was blended with PHB and the properties of the blends investigated. The results are reported in Chapter 6. At up to 40 wt% methanolsoluble lignin, the experimental data fitted the Gordon-Taylor and Kwei models, similar to the results obtained soda lignin-based blends. However, the values obtained for the interactive parameters for the methanol-soluble lignin blends were slightly lower than the blends obtained with soda lignin indicating weaker association between methanol-soluble lignin and PHB. FT-IR data confirmed that hydrogen bonding is the main interactive force between the reactive functional groups of lignin and the carbonyl group of PHB. In summary, the structural differences existing between the two lignins did not manifest itself in the properties of their blends.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The higher harmonic components available from large-amplitude Fourier-transformed alternating current (FT-ac) voltammetry enable the surface active state of a copper electrode in basic media to be probed in much more detail than possible with previously used dc methods. In particular, the absence of capacitance background current allows low-level Faradaic current contributions of fast electron-transfer processes to be detected; these are usually completely undetectable under conditions of dc cyclic voltammetry. Under high harmonic FT-ac voltammetric conditions, copper electrodes exhibit well-defined and reversible premonolayer oxidation responses at potentials within the double layer region in basic 1.0 M NaOH media. This process is attributed to oxidation of copper adatoms (Cu*) of low bulk metal lattice coordination numbers to surface-bonded, reactive hydrated oxide species. Of further interest is the observation that cathodic polarization in 1.0 M NaOH significantly enhances the current detected in each of the fundamental to sixth FT-ac harmonic components in the Cu*/Cu hydrous oxide electron-transfer process which enables the underlying electron transfer processes in the higher harmonics to be studied under conditions where the dc capacitance response is suppressed; the results support the incipient hydrous oxide adatom mediator (IHOAM) model of electrocatalysis. The underlying quasi-reversible interfacial Cu*/Cu hydrous oxide process present under these conditions is shown to mediate the reduction of nitrate at a copper electrode, while the mediator for the hydrazine oxidation reaction appears to involve a different mediator or active state redox couple. Use of FT-ac voltammetry offers prospects for new insights into the nature of active sites and electrocatalysis at the electrode/solution interface of Group 11 metals in aqueous media.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We find that visible light irradiation of gold–palladium alloy nanoparticles supported on photocatalytically inert ZrO2 significantly enhances their catalytic activity for oxidant-free dehydrogenation of aromatic alcohols to the corresponding aldehydes at ambient temperatures. Dehydrogenation is also the dominant process in the selective oxidation of the alcohols to the corresponding aldehydes with molecular oxygen. The alloy nanoparticles strongly absorb light and exhibit superior catalytic and photocatalytic activity when compared to either pure palladium or gold nanoparticles. Analysis with a free electron gas model for the bulk alloy structure reveals that the alloying increases the surface charge heterogeneity on the alloy particle surface, which enhances the interaction between the alcohol molecules and the metal NPs. The increased surface charge heterogeneity of the alloy particles is confirmed with density function theory applied to small alloy clusters. Optimal catalytic activity was observed with a Au : Pd molar ratio of 1 : 186, which is in good agreement with the theoretical analysis. The rate-determining step of the dehydrogenation is hydrogen abstraction. The conduction electrons of the nanoparticles are photo-excited by the incident light giving them the necessary energy to be injected into the adsorbed alcohol molecules, promoting the hydrogen abstraction. The strong chemical adsorption of alcohol molecules facilitates this electron transfer. The results show that the alloy nanoparticles efficiently couple thermal and photonic energy sources to drive the dehydrogenation. These findings provide useful insight into the design of catalysts that utilize light for various organic syntheses at ambient temperatures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Alloy nanoparticles (NPs) of gold and palladium on ZrO2 support (Au–Pd@ZrO2) were found to be highly active in oxidation of benzyl alcohols and can be used for the tandem synthesis of imines from benzyl alcohols and amines via a one-pot, two-step process at mild reaction conditions. The first step of the process is oxidation of benzyl alcohol to benzaldehyde, excellent yields were achieved after 7 h reaction at 40 °C without addition of any base. In the second step, aniline was introduced into the reaction system to produced N-benzylideneaniline. The benzaldehyde obtained in the first step was completely consumed within 1 h. A range of benzyl alcohols and amines were investigated for the general applicability of the Au–Pd alloy catalysts. It is found that the performance of the catalysts depends on the Au–Pd metal contents and composition. The optimal catalyst is 3.0 wt% Au–Pd@ZrO2 with a Au:Pd molar ratio 1:1. The alloy NP catalyst exhibited superior catalytic properties to pure AuNP or PdNP because the surface of alloy NPs has higher charge heterogeneity than that of pure metal NPs according to simulation of density function theory (DFT)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An experimental investigation into the dynamic strain ageing (DSA) of a wrought Ni-base superalloy 720Li was conducted. Characteristics of jerky, flow have been studied at intermediate temperatures of 350, 400 and 450 degrees C at strain-rates between 10(-3) and 10(-5) s(-1). Serrations of Type C are predominant within the temperature/strain-rate range explored. The major characteristics of the serrations-i.e. (a) critical plastic strain for onset of serrations, epsilon(c); (b) average stress decrement, Delta sigma(avg); and (c) strain increment between serrations. Delta epsilon(BS)-have been examined at selected temperatures and strain-rates. Negative strain-rate sensitivity was observed in the DSA regime. However. temperature did not influence tensile properties such as yield strength, ultimate strength. elongation, reduction in area, and work hardening rate or fracture features in DSA regime. Analysis of the results Suggests that locking of the mobile dislocations by substitutional alloying elements is responsible for the DSA in alloy 720Li.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cast aluminium alloy-mica particle composites were made by dispersing mica particles in a vortex produced by stirring the liquid Al-4 wt% Cu-1.5 wt% Mg alloy and then casting the melt containing the suspended particles into permanent moulds. Spiral fluidity and casting fluidity of the alloy containing mica particles in suspension were determined. Both the spiral fluidity and the casting fluidity of the base alloy were found to decrease with an increase in volume or weight percent of mica particles (of a given size), and with a decrease in particle size (for a given amount of particles). The fluidities of Al-4 wt% Cu-1.5 wt% Mg alloys containing suspended mica particles were found to correlate very well with the surface area of suspended mica particles. The regression equation for spiral fluidity Y (cm) as a function of surface area of mica particles per gram of spiral X (cm2 g–1) at 700° C was found to be Y=42.62–0.42X with a correlation coefficient of 0.9634. The regression equations for casting fluidity Yprime (cm) as a functiono of surface area of mica particles per gram of fluidity test piece Xprime (cm2 g–1) at 710 and 670° C were found to be Yprime=19.71–0.17Xprime and Yprime=13.52–0.105Xprime with correlation coefficients of 0.9194 and 0.9612 respectively. The percentage decrease in casting fluidity of composite melts containing up to 2.5 wt% mica with a drop in temperature is quite similar to the corresponding decrease in the casting fluidity of base alloy melts (without mica). The change in fluidity due to mica dispersions has been discussed in terms of changes in viscosity of the composite melts. However, the fluidities of these composite alloys containing up to 2.5 wt% mica are adequate for making a variety of simple castings including bearings for which these alloys have been developed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electrical resistivity of bulk semiconducting amorphous TlxSe100-x alloys with 0 ≤ x ≤ 25 has been investigated up to a pressure of 14 GPa and down to liquidnitrogen temperature by use of a Bridgman anvil device. All the glasses undergo a discontinuous pressure-induced semiconducting-to-metal transition. X-ray diffraction studies on the pressure-recovered samples show that the high-pressure phase is the crystalline phase. The pressure-induced crystalline products are identified to be a mixture of Se having a hexagonal structure with a = 4·37 Aring and c = 4·95 Aring and TlSe having a tetragonal structure with a = 8·0 Aring and c = 7·0 Aring

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of pressure on the electrical resistivity of bulk Si20Te80 glass is reported. Results of calorimetric, X-ray and transmission electron microscopy investigations at different stages of crystallization of bulk Si20Te80 glass are also presented. A pressure induced glass-to-crystal transition occurs at a pressure of 7 GPa. Pressure and temperature dependence of the electrical resistivity of Si20Te80 glass show the observed transition is a pressure induced glassy semiconductor to crystalline metal transition. The glass also exhibits a double Tg effect and double stage crystallization, under heating. The differences between the temperature induced crystallization (primary crystallization) and pressure induced congruent crystallization are discussed.