972 resultados para Youngs Modulus


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon nanotubes (CNTs), due to their exceptional magnetic, electrical and mechanical properties, are promising candidates for several technical applications ranging from nanoelectronic devices to composites. Young's modulus holds the special status in material properties and micro/nano-electromechanical systems (MEMS/NEMS) design. The excellently regular structures of CNTs facilitate accurate simulation of CNTs' behavior by applying a variety of theoretical methods. Here, three representative numerical methods, i.e., Car-Parrinello molecular dynamics (CPMD), density functional theory (DFT) and molecular dynamics (MD), were applied to calculate Young's modulus of single-walled carbon nanotube (SWCNT) with chirality (3,3). The comparative studies showed that the most accurate result is offered by time consuming DFT simulation. MID simulation produced a less accurate result due to neglecting electronic motions. Compared to the two preceding methods the best performance, with a balance between efficiency and precision, was deduced by CPMD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relationships between indentation responses and Young's modulus of an indented material were investigated by employing dimensional analysis and finite element method. Three representative tip bluntness geometries were introduced to describe the shape of a real Berkovich indenter. It was demonstrated that for each of these bluntness geometries, a set of approximate indentation relationships correlating the ratio of nominal hardness/reduced Young's modulus H (n) /E (r) and the ratio of elastic work/total work W (e)/W can be derived. Consequently, a method for Young's modulus measurement combined with its accuracy estimation was established on basis of these relationships. The effectiveness of this approach was verified by performing nanoindentation tests on S45C carbon steel and 6061 aluminum alloy and microindentation tests on aluminum single crystal, GCr15 bearing steel and fused silica.

Relevância:

20.00% 20.00%

Publicador: