936 resultados para Yield Strength
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Modificações na composição química e no processamento termomecânico têm sido algumas das várias alternativas estudadas, para melhorar o desempenho de ligas de alumínio tradicionais. Neste trabalho foi modificada a composição de uma liga Al-Mn-Mg do tipo AA 3104, endurecível por deformação, adicionando-se diversos teores de zinco, transformando-a numa liga Al-Mn-Mg(Zn), endurecível por precipitação. O objetivo foi estudar e quantificar os efeitos do zinco sobre o processamento termomecânico e as propriedades mecânicas da liga modificada. Ligas com teores de zinco entre 0,03 a 1,52% foram fundidas e processadas obtendo-se um encruamento semelhante a condição H-19 industrial, denominada rota R. Ligas com teores de zinco entre 1,14 a 2,17% foram fundidas e processadas segundo três diferentes rotas: na rota S, o recozimento da rota R foi substituído por solubilização antes da laminação a frio; nas rotas E3H e E6H, as tiras laminadas a frio foram envelhecidas em dois estágios: 121°C por três horas para as duas rotas, mais três horas para a rota E3H e seis para a rota EH a 163°. A tensão de escoamento (SIGMA IND E) e a resistência à tração (SIGMA IND T) para a rota R aumentaram da ordem de 18% e 19% respectivamente, com o aumento do teor de zinco, enquanto o alongamento (E) permaneceu em torno de 4,5%. As propriedades mecânicas (SIGMA IND E SIGMA T E ) AUMENTARAM EM TORNO DE 25%, 31% E 27%, respectivamente, para a rota S. Considerando concentrações aproximadamente iguais de zinco, não foram verificadas diferenças significativas para (SIGMA E SIGMA T), entre as rotas R E S, no entanto, a rota S apresentou alongamento médio maior que a rota R da ordem 44%. Os menores valores de (SIGMA IND E SIGMA IND T) e os maiores valores de E foram obtidos para a rota E6H.
Resumo:
Statement of problem. Removable partial dentures are affected by fatigue because of the cyclic mechanism of the masticatory system ansi frequent insertion and removal. Titanium and its alloys have been used in the manufacture of denture frameworks; however, preventive agents with fluorides are thought to attack titanium alloy surfaces.Purpose. This study evaluated, compared, analyzed the corrosion-fatigue life of commercially pure titanium and Ti-6Al-4V alloy in different storage environments.Material and methods. For each metal, 33 dumbbell rods, 2.3 mm in diameter at the central segment, were cast in the Rematitan system. Corrosion-fatigue strength test was carried out through a universal testing machine with a load 30% lon er than the 0.2% offset yield strength and a combined influence of different: environments: in air at room temperature, with synthetic saliva, and with fluoride synthetic saliva. After failure, the number of cycles were recorded, and fracture surfaces were examined with on SEM.Results. ANOVA and Tukey's multiple comparison rest indicated that Ti-6Al-4V alloy achieved 21,269 cycles (SD = 8,355) against 19,157 cycles (SD = 3,624) for the commercially purr Ti. There were no significant differences between either metal in the corrosion-fatigue life for dry specimens, but when the solutions were present, the fatigue life was significantly reduced, probably because of the product-ion of corrosion pits caused by superficial reactions.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The macrostructure of an alloy solidification in the raw state is of utmost importance due to its influence on mechanical properties. A structure showing columnar grains is generally undesirable in most applications of cast products and grain refining aims to suppress the formation of these grains and get a fine-grained equiaxed structure that improves the supply of liquid metal and the mechanical properties, as yield strength and tensile strength limit, as well as the tendency of formation of hot cracks. The type and size of grains formed are determined by chemical composition, cooling rate and the use of inoculum for grain refining. Titanium and boron are the major refiners in the aluminum industry and can be added to the molten metal in the form of alloys such as Al-Ti, Al-Ti-B or Al-B. In this paper we will discuss the information obtained from cooling curves and first derivative of the cooling curve to obtain the thermal parameters that influence the process of grain refining alloy AA 356.0
Resumo:
The study of mechanical properties of high-alloy special steels is of great interest of the steel industry due to the great demand by companies that manufacture automotive components of high criticality, and also because of its high commercial value. However, the development of this type of alloy metals demand highly technical knowledge. Among these extremely important kinds of steel, the subject which is the interest of this study is the special steel modified by niobium. The manganese and niobium are the main alloying elements in the composition of these steels, both of them increase the stability of the austenite region, however, manganese increases the hardenability and tensile yield strength, and niobium increases the mechanical strength and promotes refining the grain. The mechanical characterization of steel SAE 1312 modified the niobium was made in order to gain a better understanding of the influence on the mechanical properties caused by aging at different temperatures and for different reductions in the drawing of gauge material. This characterization was made by means of tensile test and hardness. This material showed an increase in yield strength and hardness when gauge with large reductions during the wiredrawing, but when subjected to aging temperatures higher than 300 ° C had a slight loss of these properties
Resumo:
In order to study the mechanical properties of micro alloyed steel API 5L X70, a material used to manufacture pipes for pipeline transportation lines for use in oil and gas, a study was made of toughness, tensile strength, impact strength, hardness and microstructure steel. To perform these various tests were made where they can acquire the characteristics of the material. Were performed at the Faculty of Engineering in Guaratinguetá in the Department of Materials and Technology and the tensile tests, Charpy impact test, metallography and hardness testing of material API 5L X70, all tests were done with the help of technical laboratories. With these data can be an analysis of the material about his tenacity, his toughness and fragility, its hardness, its yield strength and its maximum voltage. After being asked the analyzes discussed the results showed that the micro alloyed steel API 5L X70 steel is a very tenacious, it absorbs impact energy of 300 Joules though without a break for the full body of evidence showing its tenacity
Resumo:
This project developed microstructural characterization technics of commercial dualphase and multi-phasic (TRIP) steels that were provided by the automotive industry and are currently used as the raw material for the production of automobiles. Inserted in this context, there is the development of the advanced high strength steels in consonance with the ULSABAVC project, which aims the production of safe, economically viable and efficient in terms of fuel consumption vehicles for the 21st century. The micro-structural characterization of biphasic and multiphase steels was done by the identification and quantification of the coexistent phases. In this item, a special attention was given to the technics that were performed using optic microscopy and scanning electron microscopy. An important contribution to this work was the utilization of different alternative chemical reagents (Beraha, Heat-Tinting technics) in addition to the classical ones (Nital and LePera)already used conventionally by the UNESP's Group of Mechanical, Microstructural and Fractografic Characterization of Materials. The revealed microstructures were correlated with the materials' mechanical properties determined through traction tests, such as ultimate tensile strengths, yield strength and stretching important since the material has structural application in the automotive industry. As a result, it was observed the superiority concerning the studied mechanical properties for the biphasic and multiphasic steels when compared to the conventional carbon steels. Besides, it was perceived a large potential for the industrial scale utilization of the Heat Tinting technics in this field, seen its differentiation of the existent phases and easy reproducibility
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
TProducts must follow specifications in order to attend demands requested. In terms of rolled aluminum, one of the most significant items for customers is coil thickness. This is because only a tiny variation in thickness might cause a serious problem on customer's manufacturing line. Thereby, this research aims to analyze through design of experiments which factors and how they affect the thickness of aluminum coils. The response variable of the experiment is the thickness of aluminum coil, tensile strenght and yield strenght are the factors of the experiment and trimmers machines were considered as blocking. Data were obtained through tensile tests. The result of the experiment states that, according to the analysis of variance (ANOVA), while there is significant difference between the two levels of tensile strength, there is not any difference between the two levels of yield strength and trimmers machines. The thickness of the aluminum coils with high values of tensile strength tends to be thicker when compared with low values of tensile strength
Resumo:
Despite the growing concern in seeking more sustainable energy sources, oil demand is likely to grow in coming years. To keep up with this growth, the oil industry has increasingly invested in innovation and efficiency. Knowing that, new technologies have been developed to explore deeper waters, without giving up the best practices in worldwide operational safety. The use of rigid pipelines in deepwater offshore facilities is increasing quickly and because of this, the ways of storing and launching pipe have been studied and perfected. In this paper the Bauschinger effect on API 5L X70 steel was analyzed proving that there was a reduction in yield strength when an effort was applied in a previous direction, then an effort was then applied in the opposite direction. To observe this phenomenon, the tensile test was conducted to determine the mechanical properties of the base metal, such as yield stress, tensile strength, elasticity and maximum tensile, so then compare it with the results obtained in the Bauschinger Effect Test. The analysis results showed that the steel had high resistance, with good plastic deformation capacity without failing, well-defined yield point, showing itself appropriate for the operation of oil and gas pipes
Resumo:
TProducts must follow specifications in order to attend demands requested. In terms of rolled aluminum, one of the most significant items for customers is coil thickness. This is because only a tiny variation in thickness might cause a serious problem on customer's manufacturing line. Thereby, this research aims to analyze through design of experiments which factors and how they affect the thickness of aluminum coils. The response variable of the experiment is the thickness of aluminum coil, tensile strenght and yield strenght are the factors of the experiment and trimmers machines were considered as blocking. Data were obtained through tensile tests. The result of the experiment states that, according to the analysis of variance (ANOVA), while there is significant difference between the two levels of tensile strength, there is not any difference between the two levels of yield strength and trimmers machines. The thickness of the aluminum coils with high values of tensile strength tends to be thicker when compared with low values of tensile strength
Resumo:
Despite the growing concern in seeking more sustainable energy sources, oil demand is likely to grow in coming years. To keep up with this growth, the oil industry has increasingly invested in innovation and efficiency. Knowing that, new technologies have been developed to explore deeper waters, without giving up the best practices in worldwide operational safety. The use of rigid pipelines in deepwater offshore facilities is increasing quickly and because of this, the ways of storing and launching pipe have been studied and perfected. In this paper the Bauschinger effect on API 5L X70 steel was analyzed proving that there was a reduction in yield strength when an effort was applied in a previous direction, then an effort was then applied in the opposite direction. To observe this phenomenon, the tensile test was conducted to determine the mechanical properties of the base metal, such as yield stress, tensile strength, elasticity and maximum tensile, so then compare it with the results obtained in the Bauschinger Effect Test. The analysis results showed that the steel had high resistance, with good plastic deformation capacity without failing, well-defined yield point, showing itself appropriate for the operation of oil and gas pipes
Resumo:
In this work, different methods to estimate the value of thin film residual stresses using instrumented indentation data were analyzed. This study considered procedures proposed in the literature, as well as a modification on one of these methods and a new approach based on the effect of residual stress on the value of hardness calculated via the Oliver and Pharr method. The analysis of these methods was centered on an axisymmetric two-dimensional finite element model, which was developed to simulate instrumented indentation testing of thin ceramic films deposited onto hard steel substrates. Simulations were conducted varying the level of film residual stress, film strain hardening exponent, film yield strength, and film Poisson's ratio. Different ratios of maximum penetration depth h(max) over film thickness t were also considered, including h/t = 0.04, for which the contribution of the substrate in the mechanical response of the system is not significant. Residual stresses were then calculated following the procedures mentioned above and compared with the values used as input in the numerical simulations. In general, results indicate the difference that each method provides with respect to the input values depends on the conditions studied. The method by Suresh and Giannakopoulos consistently overestimated the values when stresses were compressive. The method provided by Wang et al. has shown less dependence on h/t than the others.
Resumo:
The seismic behaviour of one-storey asymmetric structures has been studied since 1970s by a number of researches studies which identified the coupled nature of the translational-to-torsional response of those class of systems leading to severe displacement magnifications at the perimeter frames and therefore to significant increase of local peak seismic demand to the structural elements with respect to those of equivalent not-eccentric systems (Kan and Chopra 1987). These studies identified the fundamental parameters (such as the fundamental period TL normalized eccentricity e and the torsional-to-lateral frequency ratio Ωϑ) governing the torsional behavior of in-plan asymmetric structures and trends of behavior. It has been clearly recognized that asymmetric structures characterized by Ωϑ >1, referred to as torsionally-stiff systems, behave quite different form structures with Ωϑ <1, referred to as torsionally-flexible systems. Previous research works by some of the authors proposed a simple closed-form estimation of the maximum torsional response of one-storey elastic systems (Trombetti et al. 2005 and Palermo et al. 2010) leading to the so called “Alpha-method” for the evaluation of the displacement magnification factors at the corner sides. The present paper provides an upgrade of the “Alpha Method” removing the assumption of linear elastic response of the system. The main objective is to evaluate how the excursion of the structural elements in the inelastic field (due to the reaching of yield strength) affects the displacement demand of one-storey in-plan asymmetric structures. The system proposed by Chopra and Goel in 2007, which is claimed to be able to capture the main features of the non-linear response of in-plan asymmetric system, is used to perform a large parametric analysis varying all the fundamental parameters of the system, including the inelastic demand by varying the force reduction factor from 2 to 5. Magnification factors for different force reduction factor are proposed and comparisons with the results obtained from linear analysis are provided.