930 resultados para XRD and SEM


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Structural characteristics of combustion synthesized, calcined and densified pure and doped nanoceria with tri-valent cations of Er, Y, Gd, Sm and Nd were analyzed by X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM). The results showed that the as-synthesized and calcined nanopowders were mesoporous and calculated lattice parameters were close to theoretical ion-packing model. The effect of dopants on elastic modulus, microhardness and fracture toughness of sintered pure and doped ceria were investigated. It was observed that tri-valent cation dopants increased the hardness of the ceria, whereas the fracture toughness and elastic modulus were decreased.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Carbon-supported Pt–Sn catalysts commonly contain Pt–Sn alloy and/or Pt–Sn bimetallic systems (Sn oxides). Nevertheless, the origin of the promotion effect due to the presence of Sn in the Pt–Sn/C catalyst towards ethanol oxidation in acid media is still under debate and some contradictions. Herein, a series of Ptx–Sny/C catalysts with different atomic ratios are synthesized by a deposition process using formic acid as the reducing agent. Catalysts structure and chemical compositions are investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) and their relationship with catalytic behavior towards ethanol electro-oxidation was established. Geometric structural changes are producing by highest Sn content (Pt1–Sn1/C) promoted the interaction of Pt and Sn forming a solid solution of Pt–Sn alloy phase, whereas, the intermediate and lowest Sn content (Pt2–Sn1/C and Pt3–Sn1/C, respectively) promoted the electronic structure modifications of Pt by Sn addition without the formation of a solid solution. The amount of Sn added affects the physical and chemical characteristics of the bimetallic catalysts as well as reducing the amount of Pt in the catalyst composition and maintaining the electrocatalytic activities at the anode. However, the influence of the Sn oxidation state in Pt–Sn/C catalysts surfaces and the alloy formation between Pt and Sn as well as with the atomic ratio on their catalytic activity towards ethanol oxidation appears minimal. Similar methodologies applied for synthesis of Ptx–Sny/C catalysts with a small change show differences with the results obtained, thus highlighting the importance of the conditions of the preparation method.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

As nuclear energy systems become more advanced, the materials encompassing them need to perform at higher temperatures for longer periods of time. In this Master’s thesis we experiment with an oxide dispersion strengthened (ODS) austenitic steel that has been recently developed. ODS materials have a small concentration of nano oxide particles dispersed in their matrix, and typically have higher strength and better extreme temperature creep resistance characteristics than ordinary steels. However, no ODS materials have ever been installed in a commercial power reactor to date. Being a newer research material, there are many unanswered phenomena that need to be addressed regarding the performance under irradiation. Furthermore, due to the ODS material traditionally needing to follow a powder metallurgy fabrication route, there are many processing parameters that need to be optimized before achieving a nuclear grade material specification. In this Master’s thesis we explore the development of a novel ODS processing technology conducted in Beijing, China, to produce solutionized bulk ODS samples with ~97% theoretical density. This is done using relatively low temperatures and ultra high pressure (UHP) equipment, to compact the mechanically alloyed (MA) steel powder into bulk samples without any thermal phase change influence or oxide precipitation. By having solutionized bulk ODS samples, transmission electron microscopy (TEM) observation of nano oxide precipitation within the steel material can be studied by applying post heat treatments. These types of samples will be very useful to the science and engineering community, to answer questions regarding material powder compacting, oxide synthesis, and performance. Subsequent analysis performed at Queen’s University included X-ray diffraction (XRD) and inductively coupled plasma optical emission spectrometry (ICP-OES). Additional TEM in-situ 1MeV Kr2+ irradiation experiments coupled with energy dispersive X-ray (EDX) techniques, were also performed on large (200nm+) non-stoichiometric oxides embedded within the austenite steel grains, in an attempt to quantify the elemental compositional changes during high temperature (520oC) heavy ion irradiation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This study presents for the first time the diet of a Late Antiquity population in southern Portugal (Civitas of Pax Julia), from the Roman villa of Monte da Cegonha (predominantly 7th century CE). Stable isotope analysis (δ13C, δ15N, δ18O, 87Sr/86Sr) of human and faunal bone collagen and apatite was conducted in order to understand the influence of Roman subsistence strategies on the way of life of rural inhabitants of the area of Pax Julia and to explore their diet (types of ingested plants, amount of animal resources, terrestrial versus marine resources). X-ray diffraction (XRD) and Fourier transform infra-red spectroscopy (FTIR) analyses were used to determine the degree of bone diagenesis and assess the reliability of the bone stable isotopic composition for palaeodietary reconstruction. Anthropological analysis revealed a cariogenic diet, rich in starchy food and carbohydrates, in at least in two individuals based on the frequency of dental caries. Collagen and apatite carbon isotopic analysis suggested that C3 plants were the basis of the population's diet, complemented with some terrestrial meat and its by-products as reflected by the observed bone collagen nitrogen isotopic composition. Moreover, whilst the fairly low apatite-collagen spacing recorded in some skeletons (at around 4‰) may have been due to freshwater organisms intake, the relatively low nitrogen values observed indicate that this consumption did not occur very often, unless in the form of fresh fish of low trophic level or fish sauces. There were no significant differences in isotopic values depending on gender or burial type. Strontium and oxygen isotopic composition of bone apatite revealed a sedentary community, with the exception of a male individual who probably did not spend his childhood in Monte da Cegonha.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Technical diversity and various knowledge is required for the understanding of undoubtedly complex system such as a Lithium-ion battery. The peculiarity is to combine different techniques that allow a complete investigation while the battery is working. Nowadays, research on Li-ion batteries (LIBs) is experiencing an exponential growth in the development of new cathode materials. Accordingly, Li-rich and Ni-rich NMCs, which have similar layered structure of LiMO2 oxides, have been recently proposed. Despite the promising performance on them, still a lot of issues have to be resolved and the materials need a more in depth characterisation for further commercial applications. In this study LiMO2 material, in particular M = Co and Ni, will be presented. We have focused on the synthesis of pure LiCoO2 and LiNiO2 at first, followed by the mixed LiNi0.5Co0.5O2. Different ways of synthesis were investigated for LCO but the sol-gel-water method showed the best performances. An accurate and systematic structural characterization followed by the appropriate electrochemical tests were done. Moreover, the in situ techniques (in-situ XRD and in situ OEMS) allowed a deep investigation in the structural change and gas evolution upon the electrochemically driven processes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The glucaric acid (GLA) has been identified as a “top value-added chemical from biomass” that can be employed for many uses; for instance, it could be a precursor of adipic acid, a monomer of Nylon-6,6. GLA can be synthetized by the oxidation of glucose (GLU), passing through the intermediate gluconic acid (GLO). In recent years, a new process has been sought to obtain GLA in an economic and environmental sustainable way, in order to replace the current use of HNO3 as a stoichiometric oxidant, or electrocatalysis and biochemical synthesis, which show several disadvantages. Thereby, this work is focused on the study of catalysts based on gold nanoparticles supported on activated carbon for the oxidation reaction of GLU to GLA using O2 as an oxidant agent and NaOH as base. The sol-immobilization method leads us to obtain small and well dispersed nanoparticles, characterized by UV-Vis, XRD and TEM techniques. Repeating the reaction on different batches of catalyst, both the synthesis and the reaction were confirmed to be reproducible. The effect of the reaction time feeding GLO as reagent was studied: the results show that the conversion of GLO increases as the reaction time increases; however, the yields of GLA and others increase up to 1 hour, and then they remain constant. In order to obtain information on the catalytic mechanism at the atomistic level, a computational study based on density functional theory and atomistic modeling of the gold nano-catalyst were performed. Highly symmetric (icosahedral and cubo-octahedral) and distorted Au55 nanoparticles have been optimized along with Au(111) and Au(100) surfaces. Distorted structures were found to be more stable than symmetrical ones due to relativistic effects. On these various models the adsorptions of various species involved in the catalysis have been studied, including OH- species, GLU and GLO. The study carried out aims to provide a method for approaching to the study of nanoparticellary catalytic systems.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Graphite is a mineral commodity used as anode for lithium-ion batteries (LIBs), and its global demand is doomed to increase significantly in the future due to the forecasted global market demand of electric vehicles. Currently, the graphite used to produce LIBs is a mix of synthetic and natural graphite. The first one is produced by the crystallization of petroleum by-products and the second comes from mining, which causes threats related to pollution, social acceptance, and health. This MSc work has the objective of determining compositional and textural characteristics of natural, synthetic, and recycled graphite by using SEM-EDS, XRF, XRD, and TEM analytical techniques and couple these data with dynamic Material Flow Analysis (MFA) models, which have the objective of predicting the future global use of graphite in order to test the hypothesis that natural graphite will no longer be used in the LIB market globally. The mineral analyses reveal that the synthetic graphite samples contain less impurities than the natural graphite, which has a rolled internal structure similar to the recycled one. However, recycled graphite shows fractures and discontinuities of the graphene layers caused by the recycling process, but its rolled internal structure can help the Li-ions’ migration through the fractures. Three dynamic MFA studies have been conducted to test distinct scenarios that include graphite recycling in the period 2022-2050 and it emerges that - irrespective of any considered scenario - there will be an increase of synthetic graphite demand, caused by the limited stocks of battery scrap available. Hence, I conclude that both natural and recycled graphite is doomed to be used in the LIB market in the future, at least until the year 2050 when the stock of recycled graphite production will be enough to supersede natural graphite. In addition, some new improvement in the dismantling and recycling processes are necessary to improve the quality of recycled graphite.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This study is focused on the synthesis, characterization and reactivity of new low nuclearity iron carbide carbonyl clusters. In particular, the oxidation of the highly reduced monocarbide tetraanionic cluster [Fe6C(CO)15]4- was studied in details using different oxidants ([Cp2Fe][PF6], HBF4·Et2O, MeI and EtI), different stoichiometries and experimental conditions. Different products were obtained depending on the reaction conditions, among which previously reported [Fe6C(CO)16]2- and [Fe5C(CO)14]2-, and new [Fe6C(CO)14(CO)13]4- and [Fe5C(CO)13(COMe)]3- were isolated and fully characterized. In the second part of this study, the reactions of [Fe6C(CO)15]4- with organic or inorganic molecules containing sulphur (S8, S2Cl2 and PhSH) were investigated aiming at introducing S-atoms within the structure of iron carbide carbonyl clusters. In particular, the reaction of [Fe6C(CO)15]4- with PhSH afforded the new [Fe6C(CO)14(SPh)]3- cluster. Conversely, using S8 and S2Cl2, oxidation of [Fe6C(CO)15]4- occurred following a path similar to that observed with other oxidizing agents. All these species have been analyzed by Single Crystal X-ray diffraction (SC-XRD) and IR spectroscopy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of this study is to graft the Surface of carbon black, by chemically introducing polymeric chains (Nafion (R) like) with proton-conducting properties. This procedure aims for a better interaction of the proton-conducting phase with the metallic catalyst particles, as well as hinders posterior support particle agglomeration. Also loss of active surface call be prevented. The proton conduction between the active electrocatalyst site and the Nafion (R) ionomer membrane should be enhanced, thus diminishing the ohmic drop ill the polymer electrolyte membrane fuel cell (PEMFC). PtRu nanoparticles were supported on different carbon materials by the impregnation method and direct reduction with ethylene glycol and characterized using amongst others FTIR, XRD and TEM. The screen printing technique was used to produce membrane electrode assemblies (MEA) for single cell tests in H(2)/air(PEMFC) and methanol operation (DMFC). In the PEMFC experiments, PtRu supported on grafted carbon shows 550 mW cm(-2) gmetal(-1) power density, which represents at least 78% improvement in performance, compared to the power density of commercial PtRu/C ETEK. The DMFC results of the grafted electrocatalyst achieve around 100% improvement. The polarization Curves results clearly show that the main Cause of the observed effect is the reduction in ohmic drop, caused by the grafted polymer. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study, the influence of the glass addition and sintering parameters on the densification and mechanical properties of tetragonal zirconia polycrystals (3Y-TZP) ceramics were evaluated. High-purity tetragonal ZrO2 powder and La2O3-rich glass were used as starting powders. Two compositions based on ZrO2 and containing 5wt.% and 10wt.% of La2O3-rich glass were studied in this work. The starting powders were mixed/milled by planetary milling, dried at 90 degrees C for 24 h, sieved through a 60 mesh screen and uniaxially cold pressed under 80 MPa. The samples were sintered in air at 1200 degrees C, 1300 degrees C, 1400 degrees C for 60 min and at 1450 degrees C for 120 min, with heating and cooling rates of 10 degrees C/min. Sintered samples were characterized by relative density, X-ray diffraction (XRD) and scanningelectron microscopy (SEM). Hardness and fracture toughness were obtained by Vickers indentation method. Dense sintered samples were obtained for all conditions. Furthermore, only tetragonal-ZrO2 was identified as crystalline phase in sintered samples, independently of the conditions studied. Samples sintered at 1300 degrees C for 60 min presented the optimal mechanical properties with hardness and fracture toughness values near to 12 GPa and 8.5 MPa m(1/2) respectively. (c) 2007 Elsevier B.V, All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ni-doped SnO(2) nanoparticles, promising for gas-sensing applications, have been synthesized by a polymer precursor method. X-ray diffraction (XRD) and transmission electron microscopy (TEM) data analyses indicate the exclusive formation of nanosized particles with rutile-type phase (tetragonal SnO(2)) for Ni contents below 10 mol%. The mean crystallite size shows a progressive reduction with the Ni content. Room-temperature Raman spectra of Ni-doped SnO(2) nanoparticles show the presence of Raman active modes and modes activated by size effects. From the evolution of the A(1g) mode with the Ni content, a solubility limit at similar to 2 mol% was estimated. Below that content, Raman results are consistent with the occurrence of solid solution (ss) and surface segregation (seg.) of Ni ions. Above similar to 2 mol% Ni, the redshift of A(1g) mode suggests that the surface segregation of Ni ions takes place. Disorder-activated bands were determined and their integrated intensity evolution with the Ni content suggest that the solid-solution regime favors the increase of disorder; meanwhile, that disorder becomes weaker as the Ni content is increased. Copyright (C) 2010 John Wiley & Sons, Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The minerals of the clay fraction in estuarine plains are mainly detrital being a mixture of marine and continental sediments, but can also be authigenic. Because of the importance of mangrove ecosystems in tropical estuarine areas and the relatively few existing studies of the mineralogical composition of soils in these environments, the aim of this study was to determine the mineralogical assemblage and identify potential contrasts along the coast of the State of Sao Paulo. Soils from I I mangroves distributed along the coastal plain of the State of Sao Paulo were sampled at depths of 0 to 20 and 60 to 80 cm, and samples of suspended sediments from the Ribeira do Iguape River were collected for analysis. Mineralogical analyses were performed on the clay and silt fractions by x-ray diffraction (XRD) and transmission electron microscopy, and fresh soil samples were analyzed by scanning electron microscopy-energy dispersive spectrometry and suspended sediments by XRD. The silt fraction contained quartz, feldspars, gibbsite, kaolinite, illite, and vermiculite, and the clay fraction contained smectite, kaolinite, illite, gibbsite, quartz, and feldspars. Locally, vermiculite, biotite, anatase, halloysite, and goethite may occur because of recent transport of sediments to the system. Pyrite was identified in fresh samples. The allochthonous minerals found either were terrestrial and transported by rivers or had originated from the continental platform by past transgressive events. We suggest that the neoformation of smectite and kaolinite occurs in mangrove soils. Different geomorphological settings along the Sao Paulo coast appear to regulate mineral distribution in mangrove soils.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A new method to prepare porous silk fibroin (SF) membranes without dialysis proposed. Silk fibers were degummed to remove sericin and the resultant fibroin was dissolved in a CaCl(2)-CH(3)CH(2)OH-H(2)O ternary solvent. Rather than undergoing dialysis, a fibroin salty solution was diluted in water and then submitted to a mechanical agitation that led to a phase separation through foam formation on the solution surface. This foam was continually collected and then compacted between plates to remove the excess of water. The membranes presented large pores with diameters of greater than 100 pm (as shown by scanning electron microscopy - SEM), porosity of 68% and water content of 91% w/w. X-ray diffraction (XRD) and infrared spectroscopy (FTIR-ATR) indicated that the membranes present SF in a beta-sheet structure even before the ethanol treatment. A typical elastic deformation profile and degradation under temperature were observed using calorimetric analysis (DSC), thermal gravimetric analysis (TGA) and mechanical tests. As indicated by the in vitro cytotoxicity tests, these membranes present potential for use as scaffolds. (C) 2009 Wiley Periodicals, Inc. J Appl Polym Sci 114: 617-623, 2009

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A number of binary Cu-X alloys (X = Fe, Cr, Si and Al) with alloying elements up to approximate to 12 at % for Fe and Cr, and = 20 at% for Al and Si were cast into thin ribbons (30-50 mu m thickness) by chill block melt spinning. The structural state of the as-cast ribbons was determined by X-ray diffraction (XRD) and microstructures of the quenched alloys were compared with the ingot equivalent, It was possible to achieve solid solution and fine dispersion of secondary phase beyond XRD detection up to approximate to 8 at% solute for Fe and Cr, which is beyond the expected concentration limits from equilibrium phase diagrams. The effects of alloying on resistivity and microhardness are also presented.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We propose new theoretical models, which generalize the classical Avrami-Nakamura models. These models are suitable to describe the kinetics of nucleation and growth in transient regime, and/or with overlapping of nucleation and growth. Simulations and predictions were performed for lithium disilicate based on data reported in the literature. One re-examined the limitations of the models currently used to interpret DTA or DSC results, and to extract the relevant kinetic parameters. Glasses and glass-ceramics with molar formulation 0.45SiO2? (0.45-x)MgO?xK2O?0.1(3CaO.P2O5) (0?x?0.090) were prepared, crystallized and studied as potential materials for biomedical applications. Substitution of K+ for Mg2+ were used to prevent devritification on cooling, to adjust the kinetics of crystallization and to modify the in vitro behaviour of resulting biomaterials. The crystallization of the glass frits was studied by DTA, XRD and SEM. Exothermic peaks were detected corresponding to bulk crystallization of whitlockite-type phosphate, Ca9MgK(PO4)7, at approximately 900ºC, and surface crystallization of a predominant forsterite phase (Mg2SiO4) at higher temperatures. XRD also revealed the presence of diopside (CaMgSi2O6 in some samples. The predominant microstructure of the phosphate phase is of the plate-type, seemingly crystallizing by a 2-dimensional growth mechanism. Impedance spectroscopy revealed significant changes in electrical behaviour, associated to crystallization of the phosphate phase. This showed that electrical measurements can be used to study the kinetics of crystallization for cases when DTA or DSC experiments reveal limitations, and to extract estimates of relevant parameters from the dependence of crystallization peak temperature, and its width at half height. In vitro studies of glasses and glass-ceramics in acelular SBF media showed bioactivity and the development of apatite layers The morphology, composition and adhesion of the apatite layer could be changed by substitution of Mg2+ by K+. Apatite layers were deposited on the surface of glass-ceramics of the nominal compositions with x=0 and 0.09, in contact with SBF at 37ºC. The adhesion of the apatite layer was quantified by the scratch test technique, having been related with SBF?s immersion time, with composition and structure of the glass phase, and with the morphology of the crystalline phase of the glass-ceramics. The structure of three glasses (x=0, 0.045 and 0.090) were investigated by MAS-NMR ( 29Si and 31P), showing that the fraction of Q3 structural units increases with the contents of Mg, and that the structure of these glasses includes orthophosphate groups (PO43-) preferentially connected to Ca2+ ions. Mg2+ ions show preference towards the silicate network. Substitution of Mg2+ by K+ allowed one to change the bioactivity. FTIR data revealed octacalcium phosphate precipitation (Ca8H2(PO4)6.5H2O) in the glass without K, while the morphology of the layer acquires the shape of partially superimposed hemispheres, spread over the surface. The glasses with K present a layer of acicular hidroxyapatite, whose crystallinity and needles thickness tend to increase along with K content.