982 resultados para Welding automation
Resumo:
This paper describes the implementation of a multi-interface module (I2M) for automation of industrial processes, based on the IEEE1451 standard. Process automation with I2M can communicate through either wires or using wireless communication, without any hardware or software changes. We used FPGA resources to implement the I2M functions FPGA, with a NIOS II processor and ZigBee communication system (IEEE802.15), as well as RS232 serial standard. Part of the project was done in the SOPC Builder environment, which gave the designer flexibility and speed to implement the NIOS II-based microprocessor system. To test the I2M implementation, a didactic Industrial Hydraulic Module (MHI-01) was used to simulate two industrial processes to be controlled by the system proposed.
Resumo:
In this article, an implementation of structural health monitoring process automation based on vibration measurements is proposed. The work presents an alternative approach which intent is to exploit the capability of model updating techniques associated to neural networks to be used in a process of automation of fault detection. The updating procedure supplies a reliable model which permits to simulate any damage condition in order to establish direct correlation between faults and deviation in the response of the model. The ability of the neural networks to recognize, at known signature, changes in the actual data of a model in real time are explored to investigate changes of the actual operation conditions of the system. The learning of the network is performed using a compressed spectrum signal created for each specific type of fault. Different fault conditions for a frame structure are evaluated using simulated data as well as measured experimental data.
Resumo:
The necessity of adapting the standardized fan models to conditions of higher temperature has emerged due to the growth of concerning referring to the consequences of the gas expelling after the Mont Blanc tunnel accident in Italy and France, where even though, with 100 fans in operation, 41 people died. However, since then, the defied solutions have pointed to aerodynamic disadvantages or have seemed nonappropriate in these conditions. The objective of this work is to present an alternative to the market standard fans considering a new technology in constructing blades. This new technology introduces the use of the stainless steel AISI 409 due to its good adaptation to temperatures higher than 400°C, particularly exposed to temperatures of gas exhaust from tunnels in fire situation. Furthermore, it presents a very good resistance to corrosion and posterior welding and pressing, due to its alloyed elements. The innovation is centered in the process of a deep drawing of metallic shells and posterior welding, in order to keep the ideal aerodynamic superficies for the fan ideal performance. On the other hand, the finite element method, through the elasto-plastic software COSMOS permitted the verification of the thickness and structural stability of the blade in relation to the aerodynamic efforts established in the project. In addition, it is not advisable the fabrication of blades with variable localized thickness not even, non-uniform ones, due to the verified concentration of tensions and the difficulties observed in the forming. In this way, this study recommends the construction of blades with uniform variations of thickness. © 2007 Springer.
Resumo:
This work presents challenges and solutions for the teaching and learning of automation applied to integrated manufacturing by means of a methodological approach based on techniques, tools and industrial equipment directly applicable in the industry. The approach was implemented in a control and automation engineering course divided into expositive and laboratory classes. Since the success of the approach is mainly from the practical activities, the article focus more on activities developed in laboratory than theorical classes. Copyright © 2007 IFAC.
Resumo:
The constant increase in digital systems complexity definitely demands the automation of the corresponding synthesis process. This paper presents a computational environment designed to produce both software and hardware implementations of a system. The tool for code generation has been named ACG8051. As for the hardware synthesis there has been produced a larger environment consisting of four programs, namely: PIPE2TAB, AGPS, TABELA, and TAB2VHDL. ACG8051 and PIPE2TAB use place/transition net descriptions from PIPE as inputs. ACG8051 is aimed at generating assembly code for the 8051 micro-controller. PIPE2TAB produces a tabular version of a Mealy type finite state machine of the system, its output is fed into AGPS that is used for state allocation. The resulting digital system is then input to TABELA, which minimizes control functions and outputs of the digital system. Finally, the output generated by TABELA is fed to TAB2VHDL that produces a VHDL description of the system at the register transfer level. Thus, we present here a set of tools designed to take a high-level description of a digital system, represented by a place/transition net, and produces as output both an assembly code that can be immediately run on an 8051 micro-controller, and a VHDL description that can be used to directly implement the hardware parts either on an FPGA or as an ASIC.
Resumo:
Conventional radiography, using industrial radiographic films, has its days numbered. Digital radiography, recently, has taken its place in various segments of products and services, such as medicine, aerospace, security, automotive, etc. As well as the technological trend, the digital technique has brought proven benefits in terms of productivity, sensitivity, the environment, tools for image treatment, cost reductions, etc. If the weld to be inspected is on a serried product, such as, for example, a pipe, the best option for the use of digital radiography is the plane detector, since its use can reduce the length of the inspection cycle due to its high degree of automation. This work tested welded joints produced with the submerged arc process, which were specially prepared in such a way that it shows small artificial cracks, which served as the basis forcomparing the sensitivity levels of the techniques involved. After carrying out the various experiments, the digital meth odshowed the highest sensitivity for the image quality indicator (IQI) of the wire and also in terms of detecting small discontinuities, indicating that the use of digital radiography using the plane detector had advantages over the conventional technique (Moreira et al. Digital radiography, the use of plane detectors for the inspection of welds in oil pipes and gas pipes.9th COTEQ and XXV National Testing Congress for Non Destructive Testing and Inspection; Salvador, Bahia, Brazil and Bavendiek et al. New digital radiography procedure exceeds film sensitivity considerably in aerospace applications. ECNDT; 2006; Berlin). The works were carried out on the basis of the specifications for oil and gas pipelines, API 5L 2004 edition (American Petroleum Institute. API 5L: specification for line pipe. 4th ed. p. 155; 2004) and ISO 3183 2007 edition (International Organization for Standardization, ISO 3183. Petroleum and gas industries - steel pipes for pi pelines transportation systems. p. 143; 2007). © 2010 Taylor & Francis.
Resumo:
The presence of precipitates in metallic materials affects its durability, resistance and mechanical properties. Hence, its automatic identification by image processing and machine learning techniques may lead to reliable and efficient assessments on the materials. In this paper, we introduce four widely used supervised pattern recognition techniques to accomplish metallic precipitates segmentation in scanning electron microscope images from dissimilar welding on a Hastelloy C-276 alloy: Support Vector Machines, Optimum-Path Forest, Self Organizing Maps and a Bayesian classifier. Experimental results demonstrated that all classifiers achieved similar recognition rates with good results validated by an expert in metallographic image analysis. © 2011 Springer-Verlag Berlin Heidelberg.
Resumo:
Includes bibliography
Resumo:
The aim of this study was to value the possibility to join, for pulsed Nd:YAG laser welding, thin foils lap joints for sealing components in corrosive environment. Experimental investigations were carried out using a pulsed neodymium: yttrium aluminum garnet laser weld to examine the influence of the pulse energy in the characteristics of the weld fillet. The pulse energy was varied from 1.0 to 2.5 J at increments of 0.25 J with a 4 ms pulse duration. The base materials used for this study were AISI 316L stainless steel and Ni-based alloys foils with 100 mu m thickness. The welds were analyzed by electronic and optical microscopy, tensile shear tests and micro hardness. The results indicate that pulse energy control is of considerable importance to thin foil weld quality because it can generate good mechanical properties and reduce discontinuities in weld joints. The ultimate tensile strength of the welded joints increased at first and then decreased as the pulse energy increased. In all the specimens, fracture occurred in the top foil heat-affected zone next to the fusion line. The microhardness was almost uniform across the parent metal, HAZ and weld metal. A slight increase in the fusion zone and heat-affected zone compared to those measured in the base metal was observed. This is related to the microstructural refinement in the fusion zone, induced by rapid cooling of the laser welding. The process appeared to be very sensitive to the gap between couples.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Doped barium cerate is a promising solid electrolyte for intermediate temperature fuel cells as a protonic conductor. However, it is difficult to sinter it to high density at a reasonable temperature. Moreover, it presents a high grain boundary resistivity at intermediate temperatures. Flash grain welding was applied to compacted samples, starting from a temperature of 910 degrees C and applying, for a short time, an ac electric polarization of 40 V, 1000 Hz. At that frequency, the resulting current flows through the grain boundaries promoting a welding via a local Joule heating. A large decrease of the grain boundary resistivity was observed by impedance spectroscopy. Scanning electron microscopy observations of polished and etched surfaces revealed highly sintered regions. Attempts were also made to combine flash grain welding with conventional sintering. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents the new active absorption wave basin, named Hydrodynamic Calibrator (HC), constructed at the University of São Paulo (USP), in the Laboratory facilities of the Numerical Offshore Tank (TPN). The square (14 m 14 m) tank is able to generate and absorb waves from 0.5 Hz to 2.0 Hz, by means of 148 active hinged flap wave makers. An independent mechanical system drives each flap by means of a 1HP servo-motor and a ball-screw based transmission system. A customized ultrasonic wave probe is installed in each flap, and is responsible for measuring wave elevation in the flap. A complex automation architecture was implemented, with three Programmable Logic Computers (PLCs), and a low-level software is responsible for all the interlocks and maintenance functions of the tank. Furthermore, all the control algorithms for the generation and absorption are implemented using higher level software (MATLAB /Simulink block diagrams). These algorithms calculate the motions of the wave makers both to generate and absorb the required wave field by taking into account the layout of the flaps and the limits of wave generation. The experimental transfer function that relates the flap amplitude to the wave elevation amplitude is used for the calculation of the motion of each flap. This paper describes the main features of the tank, followed by a detailed presentation of the whole automation system. It includes the measuring devices, signal conditioning, PLC and network architecture, real-time and synchronizing software and motor control loop. Finally, a validation of the whole automation system is presented, by means of the experimental analysis of the transfer function of the waves generated and the calculation of all the delays introduced by the automation system.