978 resultados para Waste products
Resumo:
In this work, a method was developed for the application of red mud, an alkaline leaching waste, from a bauxite processing plant located in northern Brazil (Amazon region) as starting material for heavy clay products. Samples were prepared by pressing blends of red mud and clay, which were then fired at temperatures from 900 ºC to 1190 ºC. Characterization was carried out by chemical analysis, differential thermal analysis (DTA) and X-ray diffraction (XRD), and the following ceramic properties were evaluated: water absorption, linear shrinkage and flexural strength. In order to evaluate the Na+ stability in the dense ceramic, leaching tests were also carried out on the specimens after sintering process. Results indicated that samples with 50 and 70 wt% of red mud are proper for being used in the production of ceramic bodies, due to its excellent properties, mainly high mechanical resistance and low water absorption, showing thus, an option to minimizing the environmental impacts caused by the aluminum industry.
Resumo:
Between 75% and 90% of the waste produced by health-care providers no risk or is "general" health-care waste, comparable to domestic waste. The remaining 10-25% of health-care waste is regarded as hazardous due to one or more of the following characteristics: it may contain infectious agents, sharps, toxic or hazardous chemicals or it may be radioactive. Infectious health-care waste, particularly sharps, has been responsible for most of the accidents reported in the literature. In this work the preliminary risks analysis (PRA) technique was used to evaluate practices in the handling of infectious health-care waste. Currently the PRA technique is being used to identify and to evaluate the potential for hazard of the activities, products, and services from facilities and industries. The system studied was a health-care establishment which has handling practices for infectious waste. Thirty-six procedures related to segregation, containment, internal collection, and storage operation were analyzed. The severity of the consequences of the failure (risk) that can occur from careless management of infectious health-care waste was classified into four categories: negligible, marginal, critical, and catastrophic. The results obtained in this study showed that events with critics consequences, about 80%, may occur during the implementation of the containment operation, suggesting the need to prioritize this operation. As a result of the methodology applied in this work, a flowchart the risk series was also obtained. In the flowchart the events that can occur as a consequence of a improper handling of infectious health-care waste, which can cause critical risks such as injuries from sharps and contamination (infection) from pathogenic microorganisms, are shown.
Resumo:
Techniques of production of enthomopatogenic bacteria are developed aiming to increase the productivity and to reduce the costs of the fermentative process. Like this, it has been using agroindustrial wastes or by-products as nutrient sources in culture medium, having been used, in this study, the manipueira, a by-product of the processing of the cassava flour. Fermentations were performed in flasks of Erlenmeyer of 500 mL containing 250 mL of culture media, conditioned in shaker at 180 r.p.m. and 28°C, and the media were composed by manipueira, in concentrations that varied between 400 and 1000 mL/L. The time of the process varied between 48 and 120 hours. They appraised the following parameters: cellular growth, the production of spores, the reduction of organic matter (COD analysis) and the variation of reduction sugar. Although there was a proportional cellular growth to the manipueira concentration, the production of spores was similar in all the cases, at the end of the process, in spite of the smallest speed of production of the same ones in the highest concentrations. In relation to the variation of COD, it has, also, a percentile minor of reduction in the highest concentrations. In the analysis of variation of reduction sugars, the higher concentrations are the ones that they present larger slowness in the reduction of this.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Vegetal origin agro-industrial wastes are seen as a problem since the beginning of the industrial processes; however, they are becoming attractive as raw material for numerous purposes such as active enzymes and in the molecule bioprospecting area. Moreover, it is difficult to understand what the studied residue is consisted of in studies on agro-industrial waste, since the wastes names and constituents may vary according to the used equipment, as for waste from orange and mango processing. Thus, defining a specific waste, including comparisons between botanical and industrial descriptions, can help in understanding studies about wastes. The current review sought to contextualize such a scenario by gathering definitions, relevant information and studies on agro-industrial wastes and by-products, international enzymes market, and recent studies on bioactive compounds. In this context, waste from orange and mango are interesting because of the expression of these fruits on the world market; moreover, the processing does not include steps that could disrupt these biomolecules.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Losartan is an antihypertensive agent that lost its patent protection in 2010, and, consequently, it has been available in generic form. The latter motivated the search for a rapid and precise alternative method. Here, a simple conductometric titration in aqueous medium is described for the losartan analysis in pharmaceutical formulations. The first step of the titration occurs with the protonation of losartan producing a white precipitate and resulting in a slow increase in conductivity. When the protonation stage is complete, a sharp increase in conductivity occurs which was determined to be due to the presence of excess of acid. The titrimetric method was applied to the determination of losartan in pharmaceutical products and the results are comparable with values obtained using a chromatographic method recommended by the United States Pharmacopoeia. The relative standard deviation for successive measurements of a 125 mg L-1 (2.71x10(-4) mol L-1) losartan solution was approximately 2%. Recovery study in tablet samples ranged between 99 and 102.4%. The procedure is fast, simple, and represents an attractive alternative for losartan quantification in routine analysis. In addition, it avoids organic solvents, minimizes the risk of exposure to the operator, and the waste treatment is easier compared to classical chromatographic methods.
Resumo:
Syntesis of carbon nanomaterials from corn waste (DDGS). The world's largest ethanol producer (USA) uses corn as feedstock. DDGS (distillers dried grains with solubles) is the main waste generated from this process (around 32 million t/year). DDGS samples were pyrolyzed at 1000 degrees C in a furnace with controlled atmosphere. The effluent was channeled to a second furnace, in which catalyst substrates were placed. Chromatographic analysis was used to evaluate the gaseous effluents, showing that the catalyst reduced hydrocarbon emissions. The solid products formed were analyzed by SEM and TEM. Graphitic structures and carbon nanofibers, 50 mu m in length and with diameters of 80-200 nm, were formed.
Resumo:
Die Ziele der vorliegenden Arbeit waren 1) die Entwicklung und Validierung von sensitiven und substanz-spezifischen Methoden für die quantitative Bestimmung von anionischen, nichtionischen und amphoteren Tensiden und deren Metaboliten in wässrigen Umweltproben unter Einsatz leistungsfähiger, massenspektrometrischer Analysengeräte,2) die Gewinnung von aeroben, polaren Abbauprodukten aus Tensiden in einem die realen Umweltbedingungen simulierenden Labor-Festbettbioreaktor (FBBR), dessen Biozönose oberflächenwasserbürtig war,3) zur Aufklärung des Abbaumechanismus von Tensiden neue, in 2) gewonnene Metabolite zu identifizieren und massenspektrometrisch zu charakterisieren ebenso wie den Primärabbau und den weiteren Abbau zu verfolgen,4) durch quantitative Untersuchungen von Tensiden und deren Abbauprodukten in Abwasser und Oberflächenwasser Informationen zu ihrem Eintrag und Verhalten bei unterschiedlichen hydrologischen und klimatischen Bedingungen zu erhalten,5) das Verhalten von persistenten Tensidmetaboliten in Wasserwerken, die belastetes Oberflächenwasser aufbereiten, zu untersuchen und deren Vorkommen im Trinkwasser zu bestimmen,6) mögliche Schadwirkungen von neu entdeckten Metabolite mittels ökotoxikologischer Biotests abzuschätzen,7) durch Vergleich der Felddaten mit den Ergebnissen der Laborversuche die Umweltrelevanz der Abbaustudien zu belegen. Die Auswahl der untersuchten Verbindungen erfolgte unter Berücksichtigung ihres Produktionsvolumens und der Neuheit auf dem Tensidmarkt. Sie umfasste die Waschmittelinhaltsstoffe lineare Alkylbenzol-sulfonate (LAS), welches das Tensid mit der höchsten Produktionsmenge darstellte, die beiden nichtionischen Tenside Alkylglucamide (AG) und Alkylpolyglucoside (APG), ebenso wie das amphotere Tensid Cocamidopropylbetain (CAPB). Außerdem wurde der polymere Farbübertragungsinhibitor Polyvinylpyrrolidon (PVP) untersucht.
Resumo:
The present dissertation collects the results of three different research trials which have the common aim to understand the effects of swine welfare (both at farm level and during transport) on the main fresh and dry-cured meat characteristics. The first trial was carried out in order to compare the effects of illumination regimes differing in light duration or light intensity on meat and ham quality of Italian heavy pigs. The results of this trial support the conclusion that, within a moderate range of light intensity and given an appropriate dark period for animal rest, an increase of light duration or intensity above the minimum mandatory levels has no negative impact on carcass composition, meat or long-cured hams quality. The second trial was designed with the aim to investigate the effects of water restriction on growth traits, animal welfare and meat and ham quality of liquid-fed heavy pigs. Overall, the parameters analyzed as concerns growth rate, behavioural traits, blood, as well as carcass, fresh meat and cured hams quality were not affected by the absence of fresh drinking water. However, since liquid feeding did not suppress drinker use or drinker manipulation in the experimental groups, water restriction does not appear to be an applicable method to obtain a reduction of water waste. The third trial, which was carried out in Canada, tested the effectiveness of water sprinkling market-weight pigs (115±10Kg BW) before and after transport in reducing the heat stress experienced under commercial transport conditions. Our results show that the water sprinkling protocol proposed may reduce heat stress during transport and improve pork quality, particularly in specific trailer compartments. This body of research supports the general conclusion that swine welfare could be improved in different scenarios through simple and cost-effective means, without negatively affecting the quality of the main animal-derived products.
Resumo:
Waste management represents an important issue in our society and Waste-to-Energy incineration plants have been playing a significant role in the last decades, showing an increased importance in Europe. One of the main issues posed by waste combustion is the generation of air contaminants. Particular concern is present about acid gases, mainly hydrogen chloride and sulfur oxides, due to their potential impact on the environment and on human health. Therefore, in the present study the main available technological options for flue gas treatment were analyzed, focusing on dry treatment systems, which are increasingly applied in Municipal Solid Wastes (MSW) incinerators. An operational model was proposed to describe and optimize acid gas removal process. It was applied to an existing MSW incineration plant, where acid gases are neutralized in a two-stage dry treatment system. This process is based on the injection of powdered calcium hydroxide and sodium bicarbonate in reactors followed by fabric filters. HCl and SO2 conversions were expressed as a function of reactants flow rates, calculating model parameters from literature and plant data. The implementation in a software for process simulation allowed the identification of optimal operating conditions, taking into account the reactant feed rates, the amount of solid products and the recycle of the sorbent. Alternative configurations of the reference plant were also assessed. The applicability of the operational model was extended developing also a fundamental approach to the issue. A predictive model was developed, describing mass transfer and kinetic phenomena governing the acid gas neutralization with solid sorbents. The rate controlling steps were identified through the reproduction of literature data, allowing the description of acid gas removal in the case study analyzed. A laboratory device was also designed and started up to assess the required model parameters.
Resumo:
This Ph.D. research is comprised of three major components; (i) Characterization study to analyze the composition of defatted corn syrup (DCS) from a dry corn mill facility (ii) Hydrolysis experiments to optimize the production of fermentable sugars and amino acid platform using DCS and (iii) Sustainability analyses. Analyses of DCS included total solids, ash content, total protein, amino acids, inorganic elements, starch, total carbohydrates, lignin, organic acids, glycerol, and presence of functional groups. Total solids content was 37.4% (± 0.4%) by weight, and the mass balance closure was 101%. Total carbohydrates [27% (± 5%) wt.] comprised of starch (5.6%), soluble monomer carbohydrates (12%) and non-starch carbohydrates (10%). Hemicellulose components (structural and non-structural) were; xylan (6%), xylose (1%), mannan (1%), mannose (0.4%), arabinan (1%), arabinose (0.4%), galatactan (3%) and galactose (0.4%). Based on the measured physical and chemical components, bio-chemical conversion route and subsequent fermentation to value added products was identified as promising. DCS has potential to serve as an important fermentation feedstock for bio-based chemicals production. In the sugar hydrolysis experiments, reaction parameters such as acid concentration and retention time were analyzed to determine the optimal conditions to maximize monomer sugar yields while keeping the inhibitors at minimum. Total fermentable sugars produced can reach approximately 86% of theoretical yield when subjected to dilute acid pretreatment (DAP). DAP followed by subsequent enzymatic hydrolysis was most effective for 0 wt% acid hydrolysate samples and least efficient towards 1 and 2 wt% acid hydrolysate samples. The best hydrolysis scheme DCS from an industry's point of view is standalone 60 minutes dilute acid hydrolysis at 2 wt% acid concentration. The combined effect of hydrolysis reaction time, temperature and ratio of enzyme to substrate ratio to develop hydrolysis process that optimizes the production of amino acids in DCS were studied. Four key hydrolysis pathways were investigated for the production of amino acids using DCS. The first hydrolysis pathway is the amino acid analysis using DAP. The second pathway is DAP of DCS followed by protein hydrolysis using proteases [Trypsin, Pronase E (Streptomyces griseus) and Protex 6L]. The third hydrolysis pathway investigated a standalone experiment using proteases (Trypsin, Pronase E, Protex 6L, and Alcalase) on the DCS without any pretreatment. The final pathway investigated the use of Accellerase 1500® and Protex 6L to simultaneously produce fermentable sugars and amino acids over a 24 hour hydrolysis reaction time. The 3 key objectives of the techno-economic analysis component of this PhD research included; (i) Development of a process design for the production of both the sugar and amino acid platforms with DAP using DCS (ii) A preliminary cost analysis to estimate the initial capital cost and operating cost of this facility (iii) A greenhouse gas analysis to understand the environmental impact of this facility. Using Aspen Plus®, a conceptual process design has been constructed. Finally, both Aspen Plus Economic Analyzer® and Simapro® sofware were employed to conduct the cost analysis as well as the carbon footprint emissions of this process facility respectively. Another section of my PhD research work focused on the life cycle assessment (LCA) of commonly used dairy feeds in the U.S. Greenhouse gas (GHG) emissions analysis was conducted for cultivation, harvesting, and production of common dairy feeds used for the production of dairy milk in the U.S. The goal was to determine the carbon footprint [grams CO2 equivalents (gCO2e)/kg of dry feed] in the U.S. on a regional basis, identify key inputs, and make recommendations for emissions reduction. The final section of my Ph.D. research work was an LCA of a single dairy feed mill located in Michigan, USA. The primary goal was to conduct a preliminary assessment of dairy feed mill operations and ultimately determine the GHG emissions for 1 kilogram of milled dairy feed.
Resumo:
NORM (Naturally Occurring Radioactive Material) Waste Policies for the nation's oil and gas producing states have been in existence since the 1980's, when Louisiana was the first state to develop a NORM regulatory program in 1989. Since that time, expectations for NORM Waste Policies have evolved, as Health, Safety, Environment, and Social responsibility (HSE & SR) grows increasingly important to the public. Therefore, the oil and gas industry's safety and environmental performance record will face challenges in the future, about its best practices for managing the co-production of NORM wastes. ^ Within the United States, NORM is not federally regulated. The U.S. EPA claims it regulates NORM under CERCLA (superfund) and the Clean Water Act. Though, there are no universally applicable regulations for radium-based NORM waste. Therefore, individual states have taken responsibility for developing NORM regulatory programs, because of the potential radiological risk it can pose to man (bone and lung cancer) and his environment. This has led to inconsistencies in NORM Waste Policies as well as a NORM management gap in both state and federal regulatory structures. ^ Fourteen different NORM regulations and guidelines were compared between Louisiana and Texas, the nation's top two petroleum producing states. Louisiana is the country's top crude oil producer when production from its Federal offshore waters are included, and fourth in crude oil production, behind Texas, Alaska, and California when Federal offshore areas are excluded. Louisiana produces more petroleum products than any state but Texas. For these reasons, a comparative analysis between Louisiana and Texas was undertaken to identify differences in their NORM regulations and guidelines for managing, handling and disposing NORM wastes. Moreover, this analysis was undertaken because Texas is the most explored and drilled worldwide and yet appears to lag behind its neighboring state in terms of its NORM Waste Policy and developing an industry standard for handling, managing and disposing NORM. As a result of this analysis, fourteen recommendations were identified.^
Resumo:
The European construction industry is supposed to consume the 40% of the natural European resources and to generate the 40% of the European solid waste. Conscious of the great damage being suffered by the environment because of construction activity, this work tries to provide the building actors with a new tool to improve the current situation. The tool proposed is a model for the comprehensive evaluation of construction products by determining their environmental level. In this research, the environmental level of a construction product has been defined as its quality of accomplishing the construction requirements needed by causing the minimum ecological impact in its surrounding environment. This information allows building actors to choose suitable materials for building needs and also for the environment, mainly in the project stage or on the building site, contributing to improve the relationship between buildings and environment. For the assessment of the environmental level of construction products, five indicators have been identified regarding their global environmental impact through the product life cycle: CO2 emissions provoked during their production, volume and toxicity of waste generated on the building site, durability and recycling capacity after their useful life. Therefore, the less environmental impact one construction product produces, the higher environmental level performs. The model has been tested in 30 construction products that include environmental criteria in their description. The results obtained will be discussed in this article. Furthermore, this model can lay down guidelines for the selection of ecoefficient construction products and the design of new eco-competitive and eco-committed ones
Resumo:
In Spain, large quantities of wine are produced every year (3,339,700 tonnes in 2011) (FAO, 2011) with the consequent waste generation. During the winemaking process, solid residues like grape stalks are generated, as well as grape marc and wine lees as by-products. According to the Council Regulation (EC) 1493/1999 on the common organization of the wine market, by-products coming from the winery industry must be sent to alcohol-distilleries to generate exhausted grape marc and vinasses. With an adequate composting treatment, these wastes can be applied to soils as a source of nutrients and organic matter. A three-year field experiment (2011, 2012 and 2013) was carried out in Ciudad Real (central Spain) to study the effects of wine-distillery waste compost application in a melon crop (Cucumis melo L.). Melon crop has been traditionally cultivated in this area with high inputs of water and fertilizers, but no antecedents of application of winery wastes are known. In a randomized complete block design, four treatments were compared: three compost doses consisted of 6.7 (D1), 13.3 (D2) and 20 t compost ha-1 (D3), and a control treatment without compost addition (D0). The soil was a shallow sandy-loam (Petrocalcic Palexeralfs) with a depth of 0.60 m and a discontinuous petrocalcic horizon between 0.60 and 0.70 m, slightly basic (pH 8.4), poor in organic matter (0.24%), rich in potassium (410 ppm) and with a medium level of phosphorus (22.1 ppm). During each growing period four harvests were carried out and total and marketable yield (fruits weighting <1 kg or visually rotten were not considered), fruit average weight and fruit number per plant were determined. At the end of the crop cycle, four plants per treatment were sampled and the nutrient content (N, P and K) was determined. Soil samplings (0-30 cm depth) were carried before the application of compost and at the end of each growing season and available N and P, as well as exchangeable K content were analyzed. With this information, an integrated analysis was carried out with the aim to evaluate the suitability of this compost as organic amendment.