919 resultados para WHAM, Molecular Dynamics, Umbrella Sampling, CUDA, GPU, C
Resumo:
Classical molecular dynamics is applied to the rotation of a dipolar molecular rotor mounted on a square grid and driven by rotating electric field E(ν) at T ≃ 150 K. The rotor is a complex of Re with two substituted o-phenanthrolines, one positively and one negatively charged, attached to an axial position of Rh\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{2}^{4+}}}\end{equation*}\end{document} in a [2]staffanedicarboxylate grid through 2-(3-cyanobicyclo[1.1.1]pent-1-yl)malonic dialdehyde. Four regimes are characterized by a, the average lag per turn: (i) synchronous (a < 1/e) at E(ν) = |E(ν)| > Ec(ν) [Ec(ν) is the critical field strength], (ii) asynchronous (1/e < a < 1) at Ec(ν) > E(ν) > Ebo(ν) > kT/μ, [Ebo(ν) is the break-off field strength], (iii) random driven (a ≃ 1) at Ebo(ν) > E(ν) > kT/μ, and (iv) random thermal (a ≃ 1) at kT/μ > E(ν). A fifth regime, (v) strongly hindered, W > kT, Eμ, (W is the rotational barrier), has not been examined. We find Ebo(ν)/kVcm−1 ≃ (kT/μ)/kVcm−1 + 0.13(ν/GHz)1.9 and Ec(ν)/kVcm−1 ≃ (2.3kT/μ)/kVcm−1 + 0.87(ν/GHz)1.6. For ν > 40 GHz, the rotor behaves as a macroscopic body with a friction constant proportional to frequency, η/eVps ≃ 1.14 ν/THz, and for ν < 20 GHz, it exhibits a uniquely molecular behavior.
Resumo:
Many elementary chemical and physical processes such as the breaking of a chemical bond or the vibrational motion of atoms within a molecule take place on a femtosecond (fs = 10−15 s) or picosecond (ps = 10−12 s) time scale. It is now possible to monitor these events as a function of time with temporal resolution well below 100 fs. This capability is based on the pump-probe technique where one optical pulse triggers a reaction and a second delayed optical pulse probes the changes that ensue. To illustrate this capability, the dynamics of ligand motion within a protein are presented. Moving beyond casual observation of a reaction to active control of its outcome requires additional experimental and theoretical effort. To illustrate the concept of control, the effect of optical pulse duration on the vibrational dynamics of a tri-atomic molecule are discussed. The experimental and theoretical resources currently available are poised to make the dream of reaction control a reality for certain molecular systems.
Resumo:
Constant pressure and temperature molecular dynamics techniques have been employed to investigate the changes in structure and volumes of two globular proteins, superoxide dismutase and lysozyme, under pressure. Compression (the relative changes in the proteins' volumes), computed with the Voronoi technique, is closely related with the so-called protein intrinsic compressibility, estimated by sound velocity measurements. In particular, compression computed with Voronoi volumes predicts, in agreement with experimental estimates, a negative bound water contribution to the apparent protein compression. While the use of van der Waals and molecular volumes underestimates the intrinsic compressibilities of proteins, Voronoi volumes produce results closer to experimental estimates. Remarkably, for two globular proteins of very different secondary structures, we compute identical (within statistical error) protein intrinsic compressions, as predicted by recent experimental studies. Changes in the protein interatomic distances under compression are also investigated. It is found that, on average, short distances compress less than longer ones. This nonuniform contraction underlines the peculiar nature of the structural changes due to pressure in contrast with temperature effects, which instead produce spatially uniform changes in proteins. The structural effects observed in the simulations at high pressure can explain protein compressibility measurements carried out by fluorimetric and hole burning techniques. Finally, the calculation of the proteins static structure factor shows significant shifts in the peaks at short wavenumber as pressure changes. These effects might provide an alternative way to obtain information concerning compressibilities of selected protein regions.
Resumo:
Molecular dynamics simulations of the oligonucleotide duplex d(CGCGCG)2 in aqueous solution are used to investigate the glass transition phenomenon. The simulations were performed at temperatures in the 20 K to 340 K range. The mean square atomic fluctuations showed that the behavior of the oligonucleotide duplex was harmonic at low temperatures. A glass transition temperature at 223 K to 234 K was inferred for the oligonucleotide duplex, which is in agreement with experimental observations. The largest number of hydrogen bounds between the polar atoms of the oligonucleotide duplex and the water molecules was obtained at the glass transition temperature. With increasing temperature we observed a decrease in the average lifetime of the hydrogen bonds to water molecules.
Resumo:
The specific signal transduction function of the gamma c subunit in the interleukin (IL) 2, IL-4, IL-7, IL-9, and IL-15 receptor complexes remains undefined. The present structure-function analyses demonstrated that the entire cytoplasmic tail of gamma c could be functionally replaced in the IL-2 receptor (IL-2R) signaling complex by a severely truncated erythropoietin receptor cytoplasmic domain lacking tyrosine residues. Heterodimerization of IL-2R beta with either gamma c or the truncated erythropoietin receptor chain led to an array of specific signals normally derived from the native IL-2R despite the substitution of Janus kinase JAK2 for JAK3 in the receptor complex. These findings thus suggest a model in which the gamma c subunit serves as a common and generic "trigger" chain by providing a nonspecific Janus kinase for signaling program initiation, while signal specificity is determined by the unique "driver" subunit in each of the gamma c- containing receptor complexes. Furthermore, these results may have important functional implications for the asymmetric design of many cytokine receptor complexes and the evolutionary design of receptor subfamilies that share common trigger or driver subunits.
Resumo:
The helix-coil transition equilibrium of polypeptides in aqueous solution was studied by molecular dynamics simulation. The peptide growth simulation method was introduced to generate dynamic models of polypeptide chains in a statistical (random) coil or an alpha-helical conformation. The key element of this method is to build up a polypeptide chain during the course of a molecular transformation simulation, successively adding whole amino acid residues to the chain in a predefined conformation state (e.g., alpha-helical or statistical coil). Thus, oligopeptides of the same length and composition, but having different conformations, can be incrementally grown from a common precursor, and their relative conformational free energies can be calculated as the difference between the free energies for growing the individual peptides. This affords a straightforward calculation of the Zimm-Bragg sigma and s parameters for helix initiation and helix growth. The calculated sigma and s parameters for the polyalanine alpha-helix are in reasonable agreement with the experimental measurements. The peptide growth simulation method is an effective way to study quantitatively the thermodynamics of local protein folding.
Resumo:
Gli acidi peptido nucleici sono potenti strumenti utilizzati in ambito biotecnologico per colpire DNA o RNA. PNA contenenti basi o backbone modificati sono attualmente studiati per migliorarne le proprietà in ambito biologico. Bersagliare i micro RNA (anti-miR) è particolarmente interessante nell’ottica di future applicazioni terapeutiche, ma strumenti computazionali che aiutino nel design di nuovi PNA anti-miR non sono stati ancora completamente sviluppati. Le proprietà conformazionali del singolo filamento di PNA (non modificato o recante modificazioni in γ) e dei duplex PNA:RNA e i processi di re-annealing e melting sono stati studiati tramite Dinamica Molecolare e Metadinamica. L’approccio computazionale consolidato, assieme a un programma modificato per la generazione delle strutture dei duplex contenenti PNA, è stato utilizzato per il virtual screening di PNA contenenti basi modificate. Sono state inoltre sintetizzate le unità per l’ottenimento del composto più promettente e una funzione idrolitica da legare al monomero finale.
Resumo:
The formation and rupture of atomic-sized contacts is modelled by means of molecular dynamics simulations. Such nano-contacts are realized in scanning tunnelling microscope and mechanically controlled break junction experiments. These instruments routinely measure the conductance across the nano-sized electrodes as they are brought into contact and separated, permitting conductance traces to be recorded that are plots of conductance versus the distance between the electrodes. One interesting feature of the conductance traces is that for some metals and geometric configurations a jump in the value of the conductance is observed right before contact between the electrodes, a phenomenon known as jump-to-contact. This paper considers, from a computational point of view, the dynamics of contact between two gold nano-electrodes. Repeated indentation of the two surfaces on each other is performed in two crystallographic orientations of face-centred cubic gold, namely (001) and (111). Ultimately, the intention is to identify the structures at the atomic level at the moment of first contact between the surfaces, since the value of the conductance is related to the minimum cross-section in the contact region. Conductance values obtained in this way are determined using first principles electronic transport calculations, with atomic configurations taken from the molecular dynamics simulations serving as input structures.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
Isothermal-isobaric (NPT) molecular dynamics simulation has been performed to investigate the layering behavior and structure of nanoconfined quaternary alkylammoniums in organoclays. This work is focused on systems consisting of two clay layers and a number of alkylammoniums, and involves the use of modified Dreiding force field. The simulated basal spacings of organoclays agree satisfactorily with the experimental results in the literature. The atomic density profiles in the direction normal to the clay surface indicate that the alkyl chains within the interlayer space of montmorillonite exhibit an obvious layering behavior. The headgroups of long alkyl chains are distributed within two layers close to the clay surface, whereas the distributions of methyl and methylene groups are strongly dependent on the alkyl chain length and clay layer charge. Monolayer, bilayer, and pseudo-trilayer structures are found in organoclays modified with single long alkyl chains, which are identical to the structural models based on the measured basal spacings. A pseudo-quadrilayer structure, for the first time to our knowledge, is also identified in organoclays with double long alkyl chains. In the mixture structure of paraffin-type and multilayer, alkyl chains do not lie flat within a single layer but interlace, and also jump to the next layer in pseudo-trilayer as well as next nearest layer in pseudo-quadrilayer.
Resumo:
The structural and dynamic properties of dioctadecyldimethylammoniums (DODDMA) intercalated into 2:1 layered clays are investigated using isothermal-isobaric (NPT) molecular dynamics (MD) simulation. The simulated results are in reasonably good agreement with the available experimental measurements, such as X-ray diffraction (XRD), atom force microscopy (AFM), Fourier transform infrared (FTIR), and nuclear magnetic resonance (NMR) spectroscopies. The nitrogen atoms are found to be located mainly within two layers close to the clay surface whereas methylene groups form a pseudoquadrilayer structure. The results of tilt angle and order parameter show that interior two-bond segments of alkyl chains prefer an arrangement parallel to the clay surface, whereas the segments toward end groups adopt a random orientation. In addition, the alkyl chains within the layer structure lie almost parallel to the clay surface whereas those out of the layer structure are essentially perpendicular to the surface. The trans conformations are predominant in all cases although extensive gauche conformations are observed, which is in agreement with previous simulations on n-butane. Moreover, an odd-even effect in conformation distributions is observed mainly along the chains close to the head and tail groups. The diffusion constants of both nitrogen atoms and methylene groups in these nanoconfined alkyl chains increase with the temperature and methelene position toward the tail groups.
Resumo:
Bacterial chaperonin, GroEL, together with its co-chaperonin, GroES, facilitates the folding of a variety of polypeptides. Experiments suggest that GroEL stimulates protein folding by multiple cycles of binding and release. Misfolded proteins first bind to an exposed hydrophobic surface on GroEL. GroES then encapsulates the substrate and triggers its release into the central cavity of the GroEL/ES complex for folding. In this work, we investigate the possibility to facilitate protein folding in molecular dynamics simulations by mimicking the effects of GroEL/ES namely, repeated binding and release, together with spatial confinement. During the binding stage, the (metastable) partially folded proteins are allowed to attach spontaneously to a hydrophobic surface within the simulation box. This destabilizes the structures, which are then transferred into a spatially confined cavity for folding. The approach has been tested by attempting to refine protein structural models generated using the ROSETTA procedure for ab initio structure prediction. Dramatic improvements in regard to the deviation of protein models from the corresponding experimental structures were observed. The results suggest that the primary effects of the GroEL/ES system can be mimicked in a simple coarse-grained manner and be used to facilitate protein folding in molecular dynamics simulations. Furthermore, the results Sur port the assumption that the spatial confinement in GroEL/ES assists the folding of encapsulated proteins.
Resumo:
Hydrophobins are small (similar to 100 aa) proteins that have an important role in the growth and development of mycelial fungi. They are surface active and, after secretion by the fungi, self-assemble into amphipathic membranes at hydrophobic/hydrophilic interfaces, reversing the hydrophobicity of the surface. In this study, molecular dynamics simulation techniques have been used to model the process by which a specific class I hydrophobin, SC3, binds to a range of hydrophobic/ hydrophilic interfaces. The structure of SC3 used in this investigation was modeled based on the crystal structure of the class II hydrophobin HFBII using the assumption that the disulfide pairings of the eight conserved cysteine residues are maintained. The proposed model for SC3 in aqueous solution is compact and globular containing primarily P-strand and coil structures. The behavior of this model of SC3 was investigated at an air/water, an oil/water, and a hydrophobic solid/water interface. It was found that SC3 preferentially binds to the interfaces via the loop region between the third and fourth cysteine residues and that binding is associated with an increase in a-helix formation in qualitative agreement with experiment. Based on a combination of the available experiment data and the current simulation studies, we propose a possible model for SC3 self-assembly on a hydrophobic solid/water interface.
Resumo:
Mechanosensitivity is a ubiquitous sensory mechanism found in living organisms. The simplest known mechanotransducing mechanism is found in bacteria in the form of the mechanosensitive membrane channel of large conductance, MscL. This channel has been studied extensively using a variety of methods at a functional and structural level. The channel is gated by membrane tension in the lipid bilayer alone. It serves as a safety valve protecting bacterial cells against hypoosmotic shock. MscL of Escherichia coli embedded in bilayers composed of asymmetric amounts of single-tailed and double-tailed lipids has been shown to gate spontaneously, even in the absence of membrane tension. To gain insight into the effect of the lipid membrane composition and geometry on MscL structure, a fully solvated, all-atom model of MscL in a stress-free curved bilayer composed of double- and single-tailed lipids was studied using a 9.5-ns molecular dynamics simulation. The bilayer was modeled as a domed structure accommodating the asymmetric composition of the monolayers. During the course of the simulation a spontaneous restructuring of the periplasmic loops occurred, leading to interactions between one of the loops and phospholipid headgroups. Previous experimental studies of the role of the loops agree with the observation that opening starts with a restructuring of the periplasmic loop, suggesting an effect of the curved bilayer. Because of limited resources, only one simulation of the large system was performed. However, the results obtained suggest that through the geometry and composition of the bilayer the protein structure can be affected even on short timescales.