999 resultados para Volume-fractal
Resumo:
This volume continues the story of football in Marvellous Melbourne during the 1880s. At this time the VFA continued to expand as Melbourne’s boom continued apace. In 1886 Port Melbourne, Prahran, St Kilda, Footscray and South Williamstown joined the competition, and the Ballarat clubs Ballarat, Ballarat Imperial and South Ballarat were also contending for the VFA premiership. In 1886 matches were divided into four quarters, goal umpires waved two flags to announce a goal, and time clocks and bells were employed to mark the end of quarters. Victoria also played inter-colonial matches against New South Wales, Tasmania and South Australia. VFA secretary T.S. Marshall was at the forefront of fighting the game’s turn towards professionalism, but although it was illegal to pay players, the practice continued. The period 1886 to 1890 also set the stage for the eventual formation of the Victorian Football League, for by the end of the 1880s the Victorian Football Association had become in effect a two-tier competition. The most popular clubs in the VFA, South Melbourne, Geelong, Carlton and Essendon collected the lion’s share of the gate money, which they used to build their wealth and entrench their position as the dominant Victorian teams. The lower tier clubs had to make do with paltry gate money and season fixtures that advantaged the strong clubs. In these fixtures the strong clubs elected to play each other first to increase their gate money, and only deemed to play the poorer clubs at the start of the season. This led to an increasing divide between the VFA’s rich and poor, and by 1890 South Williamstown and Prahran merged with Williamstown and St Kilda respectively, University dropped out of senior ranks, and the Ballarat clubs were excluded from competing for the VFA premiership, which left 12 senior clubs until Collingwood’s emergence in 1892. At this time, no team was as powerful as South Melbourne, which experienced the greatest success in the club’s VFA and VFL history when it collected triple premiership crowns in 1888, 1889, and 1890. South Melbourne was a most ambitious club and spearheaded the move towards professionalism, although this could not be made public. The fine teams it produced at this time contained some of the greatest players of the era, such as Peter Burns, “Sonny” Elms and “Dinny” McKay, and it looked after players with health insurance, jobs, inter-colonial trips, and other incentives. Geelong’s premiership in 1886 was perhaps its greatest triumph, but this success was followed by a premiership drought that would last for 39 years. Carlton remained one of Victorian football’s power clubs, and after securing the premiership in 1887 continued to compete for top honours. As always, the game became ever more popular and world record crowds of over 30,000 attended matches between South Melbourne, Carlton, Geelong and Essendon.
Resumo:
In this work, we study the fractal and multifractal properties of a family of fractal networks introduced by Gallos et al (2007 Proc. Nat. Acad. Sci. USA 104 7746). In this fractal network model, there is a parameter e which is between 0 and 1, and allows for tuning the level of fractality in the network. Here we examine the multifractal behavior of these networks, the dependence relationship of the fractal dimension and the multifractal parameters on parameter e. First, we find that the empirical fractal dimensions of these networks obtained by our program coincide with the theoretical formula given by Song et al (2006 Nature Phys. 2 275). Then from the shape of the τ(q) and D(q) curves, we find the existence of multifractality in these networks. Last, we find that there exists a linear relationship between the average information dimension 〈D(1)〉 and the parameter e.
Resumo:
Many studies have shown that we can gain additional information on time series by investigating their accompanying complex networks. In this work, we investigate the fundamental topological and fractal properties of recurrence networks constructed from fractional Brownian motions (FBMs). First, our results indicate that the constructed recurrence networks have exponential degree distributions; the average degree exponent 〈λ〉 increases first and then decreases with the increase of Hurst index H of the associated FBMs; the relationship between H and 〈λ〉 can be represented by a cubic polynomial function. We next focus on the motif rank distribution of recurrence networks, so that we can better understand networks at the local structure level. We find the interesting superfamily phenomenon, i.e., the recurrence networks with the same motif rank pattern being grouped into two superfamilies. Last, we numerically analyze the fractal and multifractal properties of recurrence networks. We find that the average fractal dimension 〈dB〉 of recurrence networks decreases with the Hurst index H of the associated FBMs, and their dependence approximately satisfies the linear formula 〈dB〉≈2-H, which means that the fractal dimension of the associated recurrence network is close to that of the graph of the FBM. Moreover, our numerical results of multifractal analysis show that the multifractality exists in these recurrence networks, and the multifractality of these networks becomes stronger at first and then weaker when the Hurst index of the associated time series becomes larger from 0.4 to 0.95. In particular, the recurrence network with the Hurst index H=0.5 possesses the strongest multifractality. In addition, the dependence relationships of the average information dimension 〈D(1)〉 and the average correlation dimension 〈D(2)〉 on the Hurst index H can also be fitted well with linear functions. Our results strongly suggest that the recurrence network inherits the basic characteristic and the fractal nature of the associated FBM series.
Resumo:
Aging is associated with reductions in hippocampal volume that are accelerated by Alzheimer's disease and vascular risk factors. Our genome-wide association study (GWAS) of dementia-free persons (n = 9,232) identified 46 SNPs at four loci with P values of <4.0 × 10 -7. In two additional samples (n = 2,318), associations were replicated at 12q14 within MSRB3-WIF1 (discovery and replication; rs17178006; P = 5.3 × 10 -11) and at 12q24 near HRK-FBXW8 (rs7294919; P = 2.9 × 10 -11). Remaining associations included one SNP at 2q24 within DPP4 (rs6741949; P = 2.9 × 10 -7) and nine SNPs at 9p33 within ASTN2 (rs7852872; P = 1.0 × 10 -7); along with the chromosome 12 associations, these loci were also associated with hippocampal volume (P < 0.05) in a third younger, more heterogeneous sample (n = 7,794). The SNP in ASTN2 also showed suggestive association with decline in cognition in a largely independent sample (n = 1,563). These associations implicate genes related to apoptosis (HRK), development (WIF1), oxidative stress (MSR3B), ubiquitination (FBXW8) and neuronal migration (ASTN2), as well as enzymes targeted by new diabetes medications (DPP4), indicating new genetic influences on hippocampal size and possibly the risk of cognitive decline and dementia.
Resumo:
Background: The use of large-volume electrolyte balanced solutions as preparation for colonoscopy often results in poor patient compliance and acceptance. The tolerance, safety, and efficacy of high-versus low volume colon-cleansing methods as preparation for colonoscopy in children were compared by randomized operator-blinded trial. Methods: Twenty-nine children ages 3.6-14.6 years had either high-volume nasogastric balanced polyethylene glycol electrolyte lavage (20 ml/kg/h) until the effluent was clear (n = 15), or two oral doses of sodium phosphate solution (22.5-45 ml) separated by oral fluid intake (n = 14). Results: Both preparations were equally effective. The low-volume preparation was better tolerated and caused less discomfort that the high-volume preparation, judging by serial nurse observations. The incidence of abdominal symptoms, diarrhea, sleep disturbance, and vomiting was not significantly different between the two groups. Both groups had a small reduction in mean hematocrit and serum calcium levels. The sodium phosphate preparation caused increases in mean serum sodium concentrations from 140 to 145 mmol/L and serum phosphate concentrations from 1.41 to 2.53 mmol/L. Ten hours after the commencement of the preanesthetic fast, these concentrations had returned to normal. Conclusions: There are advantages in terms of tolerance, discomfort, and case of administration with acceptable colonic cleansing with the use of the less-invasive oral sodium phosphate low-volume colon-cleansing preparation in children. Safe use requires ensuring an adequate oral fluid intake during the preparation time and avoidance of use in patients with renal insufficiency.
Resumo:
We present a generalization of the finite volume evolution Galerkin scheme [M. Lukacova-Medvid'ova,J. Saibertov'a, G. Warnecke, Finite volume evolution Galerkin methods for nonlinear hyperbolic systems, J. Comp. Phys. (2002) 183 533-562; M. Luacova-Medvid'ova, K.W. Morton, G. Warnecke, Finite volume evolution Galerkin (FVEG) methods for hyperbolic problems, SIAM J. Sci. Comput. (2004) 26 1-30] for hyperbolic systems with spatially varying flux functions. Our goal is to develop a genuinely multi-dimensional numerical scheme for wave propagation problems in a heterogeneous media. We illustrate our methodology for acoustic waves in a heterogeneous medium but the results can be generalized to more complex systems. The finite volume evolution Galerkin (FVEG) method is a predictor-corrector method combining the finite volume corrector step with the evolutionary predictor step. In order to evolve fluxes along the cell interfaces we use multi-dimensional approximate evolution operator. The latter is constructed using the theory of bicharacteristics under the assumption of spatially dependent wave speeds. To approximate heterogeneous medium a staggered grid approach is used. Several numerical experiments for wave propagation with continuous as well as discontinuous wave speeds confirm the robustness and reliability of the new FVEG scheme.
Resumo:
An artificial neural network (ANN) is presented to predict a 28-day compressive strength of a normal and high strength self compacting concrete (SCC) and high performance concrete (HPC) with high volume fly ash. The ANN is trained by the data available in literature on normal volume fly ash because data on SCC with high volume fly ash is not available in sufficient quantity. Further, while predicting the strength of HPC the same data meant for SCC has been used to train in order to economise on computational effort. The compressive strengths of SCC and HPC as well as slump flow of SCC estimated by the proposed neural network are validated by experimental results.
Resumo:
The acceptance of broadband ultrasound attenuation (BUA) for the assessment of osteoporosis suffers from a limited understanding of both ultrasound wave propagation through cancellous bone and its exact dependence upon the material and structural properties. It has recently been proposed that ultrasound wave propagation in cancellous bone may be described by a concept of parallel sonic rays; the transit time of each ray defined by the proportion of bone and marrow propagated. A Transit Time Spectrum (TTS) describes the proportion of sonic rays having a particular transit time, effectively describing the lateral inhomogeneity of transit times over the surface aperture of the receive ultrasound transducer. The aim of this study was to test the hypothesis that the solid volume fraction (SVF) of simplified bone:marrow replica models may be reliably estimated from the corresponding ultrasound transit time spectrum. Transit time spectra were derived via digital deconvolution of the experimentally measured input and output ultrasonic signals, and compared to predicted TTS based on the parallel sonic ray concept, demonstrating agreement in both position and amplitude of spectral peaks. Solid volume fraction was calculated from the TTS; agreement between true (geometric calculation) with predicted (computer simulation) and experimentally-derived values were R2=99.9% and R2=97.3% respectively. It is therefore envisaged that ultrasound transit time spectroscopy (UTTS) offers the potential to reliably estimate bone mineral density and hence the established T-score parameter for clinical osteoporosis assessment.
Resumo:
We propose a simple method of constructing quasi-likelihood functions for dependent data based on conditional-mean-variance relationships, and apply the method to estimating the fractal dimension from box-counting data. Simulation studies were carried out to compare this method with the traditional methods. We also applied this technique to real data from fishing grounds in the Gulf of Carpentaria, Australia
Resumo:
Background Sensorimotor function is degraded in patients after lower limb arthroplasty. Sensorimotor training is thought to improve sensorimotor skills, however, the optimal training stimulus with regard to volume, frequency, duration, and intensity is still unknown. The aim of this study, therefore, was to firstly quantify the progression of sensorimotor function after total hip (THA) or knee (TKA) arthroplasty and, as second step, to evaluate effects of different sensorimotor training volumes. Methods 58 in-patients during their rehabilitation after THA or TKA participated in this prospective cohort study. Sensorimotor function was assessed using a test battery including measures of stabilization capacity, static balance, proprioception, and gait, along with a self-reported pain and function. All participants were randomly assigned to one of three intervention groups performing sensorimotor training two, four, or six times per week. Outcome measures were taken at three instances, at baseline (pre), after 1.5 weeks (mid) and at the conclusion of the 3 week program (post). Results All measurements showed significant improvements over time, with the exception of proprioception and static balance during quiet bipedal stance which showed no significant main effects for time or intervention. There was no significant effect of sensorimotor training volume on any of the outcome measures. Conclusion We were able to quantify improvements in measures of dynamic, but not static, sensorimotor function during the initial three weeks of rehabilitation following TKA/THA. Although sensorimotor improvements were independent of the training volume applied in the current study, long-term effects of sensorimotor training volume need to be investigated to optimize training stimulus recommendations.
Resumo:
Root system characteristics are of fundamental importance to soil exploration and below-ground resource acquisition. Root architectural traits determine the in situ space-filling properties of a root system or root architecture. The growth angle of root axes is a principal component of root system architecture that has been strongly associated with acquisition efficiency in many crop species. The aims of this study were to examine the extent of genotypic variability for the growth angle and number of seminal roots in 27 current Australian and 3 CIMMYT wheat (Triticum aestivum L.) genotypes, and to quantify using fractal analysis the root system architecture of a subset of wheat genotypes contrasting in drought tolerance and seminal root characteristics. The growth angle and number of seminal roots showed significant genotypic variation among the wheat genotypes with values ranging from 36 to 56 (degrees) and 3 to 5 (plant-1), respectively. Cluster analysis of wheat genotypes based on similarity in their seminal root characteristics resulted in four groups. The group composition reflected to some extent the genetic background and environmental adaptation of genotypes. Wheat cultivars grown widely in the Mediterranean environments of southern and western Australia generally had wider growth angle and lower number of seminal axes. In contrast, cultivars with superior performance on deep clay soils in the northern cropping region, such as SeriM82, Baxter, Babax, and Dharwar Dry exhibited a narrower angle of seminal axes. The wheat genotypes also showed significant variation in fractal dimension (D). The D values calculated for the individual segments of each root system suggested that, compared to the standard cultivar Hartog, the drought-tolerant genotypes adapted to the northern region tended to distribute relatively more roots in the soil volume directly underneath the plant. These findings suggest that wheat root system architecture is closely linked to the angle of seminal root axes at the seedling stage. The implications of genotypic variation in the seminal root characteristics and fractal dimension for specific adaptation to drought environment types are discussed with emphasis on the possible exploitation of root architectural traits in breeding for improved wheat cultivars for water-limited environments.
Resumo:
In this paper, we present an approach to estimate fractal complexity of discrete time signal waveforms based on computation of area bounded by sample points of the signal at different time resolutions. The slope of best straight line fit to the graph of log(A(rk)A / rk(2)) versus log(l/rk) is estimated, where A(rk) is the area computed at different time resolutions and rk time resolutions at which the area have been computed. The slope quantifies complexity of the signal and it is taken as an estimate of the fractal dimension (FD). The proposed approach is used to estimate the fractal dimension of parametric fractal signals with known fractal dimensions and the method has given accurate results. The estimation accuracy of the method is compared with that of Higuchi's and Sevcik's methods. The proposed method has given more accurate results when compared with that of Sevcik's method and the results are comparable to that of the Higuchi's method. The practical application of the complexity measure in detecting change in complexity of signals is discussed using real sleep electroencephalogram recordings from eight different subjects. The FD-based approach has shown good performance in discriminating different stages of sleep.
Resumo:
Fractal Dimensions (FD) are popular metrics for characterizing signals. They are used as complexity measuresin signal analysis applications in various fields. However, proper interpretation of such analyses has not been thoroughly addressed. In this paper, we study the effect of various signal properties on FD and interpret results in terms of classical signal processing concepts such as amplitude, frequency,number of harmonics, noise power and signal bandwidth. We have used Higuchi’s method for estimating FDs. This study helps in gaining a better understanding of the FD complexity measure for various signal parameters. Our results indicate that FD is a useful metric in estimating various signal properties. As an application of the FD measure in real world scenario, the FD is used as a feature in discriminating seizures from seizure free intervals in intracranial EEG data recordings and the FD feature has given good discrimination performance.
Resumo:
Structural and rheological features of a series of molecular hydrogels formed by synthetic bile salt analogues have been scrutinized. Among seven gelators, two are neutral compounds, while the others are cationic systems among which one is a tripodal steroid derivative. Despite the fact that the chemical structures are closely related, the variety of physical characteristics is extremely large in the structures of the connected fibers (either plain cylinders or ribbons), in the dynamical modes for stress relaxation of the associated SAFINs, in the scaling laws of the shear elasticity (typical of either cellular solids or fractal floc-like assemblies), in the micron-scale texture and the distribution of ordered domains (spherulites, crystallites) embedded in a random mesh, in the type of nodal zones (either crystalline-like, fiber entanglements, or bundles), in the evolution of the distribution and morphology of fibers and nodes, and in the sensitivity to added salt. SANS appears to be a suitable technique to infer all geometrical parameters defining the fibers, their interaction modes, and the volume fraction of nodes in a SAFIN. The tripodal system is particularly singular in the series and exhibits viscosity overshoots at the startup of shear flows, an “umbrella-like” molecular packing mode involving three molecules per cross section of fiber, and scattering correlation peaks revealing the ordering and overlap of 1d self-assembled polyelectrolyte species.
Resumo:
Plasticity in amorphous alloys is associated with strain softening, induced by the creation of additional free volume during deformation. In this paper, the role of free volume, which was a priori in the material, on work softening was investigated. For this, an as-cast Zr-based bulk metallic glass (BMG) was systematically annealed below its glass transition temperature, so as to reduce the free volume content. The bonded-interface indentation technique is used to generate extensively deformed and well defined plastic zones. Nanoindentation was utilized to estimate the hardness of the deformed as well as undeformed regions. The results show that the structural relaxation annealing enhances the hardness and that both the subsurface shear band number density and the plastic zone size decrease with annealing time. The serrations in the nanoindentation load-displacement curves become smoother with structural relaxation. Regardless of the annealing condition, the nanohardness of the deformed regions is similar to 12-15% lower, implying that the prior free volume only changes the yield stress (or hardness) but not the relative flow stress (or the extent of strain softening). Statistical distributions of the nanohardness obtained from deformed and undeformed regions have no overlap, suggesting that shear band number density has no influence on the plastic characteristics of the deformed region.