908 resultados para Viable fungi
Resumo:
The effects of temperature (5-50°C), water availability (0.998-0.88 water activity, aw), and aw × temperature interactions (15-45°C) on growth of three entomogenous fungi, Beauveria bassiana, Metarhizium anisopliae, and Paecilomyces farinosus, were evaluated on a Sabouraud dextrose-based medium modified with the ionic solute KCl, the non-ionic solute glycerol, and an inert solute, polyethylene glycol (PEG) 600. The temperature ranges for growth of B. bassiana, M. anisopliae, and P. farinosus were 5-30, 5-40, and 5-30°C, and optimum growth temperatures were 25, 30, and 20°C, respectively. All three species grew over a similar aw range (0.90-0.998) at optimum temperatures for growth. However, there were significant interspecies variations in growth rates on media modified with each of the three aw-modifying solutes. Growth aw optima ranged between 0.99 and 0.97 on KCl-, glycerol-, and PEG 600-modified media for M. anisopliae and P. farinosus. B. bassiana grew optimally at 0.998 aw, regardless of aw. Comprehensive two-dimensional profiles of aw × temperature relations for growth of these three species were constructed for the first time. The results are discussed in relation to the environmental limits that determine efficacy of entomogenous fungi as biocontrol agents in nature. © 1999 Academic Press.
Resumo:
Beauveria bassiana, Metarhizium anisopliae and Paecilomyces farinosus were grown on Sabouraud Dextrose Agar (SDA) modified with KCl to give a range of water activity (a(w)) from 0.938 to 0.998. Growth of all three species was optimal at 0.983 a(w) and growth occurred over the a(w) range tested. Acyclic sugar alcohol (polyol) and trehalose content of conidia was determined by HPLC and found to vary with species and a(w). Conidia of B. bassiana and P. farinosus were found to contain totals of 1.5% and 2.3% polyols respectively at 0.998 a(w), and double these amounts at <0.950 a(w). Conidia of M. anisopliae contained from 5.7% to 6.8% polyols at each a(w) tested. In conidia of all three species the predominant polyol was mannitol. The lower molecular weight polyols, arabitol and erythritol, were found to accumulate at reduced a(w). Small amounts of glycerol were present in conidia of each species; <15% total polyols. Conidia of B. bassiana and M. anisopliae contained about 0.5% trehalose from 0.970 to 0.998 a(w), but only trace amounts below 0.950 a(w). Conidia of P. farinosus contained 2.1% trehalose at 0.998 a(w) and this decreased to <0.1% below 0.950 a(w). Potential to manipulate the endogenous reserves of conidia of these biological control agents to enhance viability and desiccation tolerance is discussed.
Resumo:
The entomopathogenic fungi Beauveria bassiana, Metarhizium anisopliae and Paecilomyces farinosus were cultured on solid agar media containing different carbohydrate components (glycerol, glucose, trehalose or starch) at concentrations of ≤ 142.7 g added carbon 1-1 for 30 d at 25°C. The water activity (a(w)) of the media ranged from 0.925 to 0.998. Growth of M. anisopliae and P. farinosus was stimulated between 0.975 and 0.995 a(w) on glucose media and that of P. farinosus at 0. 975 a(w) on glycerol media. At < 0.970 a(w), growth of each fungal species was significantly reduced (P < 0.05). Polyhydroxy alcohols (polyols) and trehalose were extracted from conidia produced on different media and quantified using HPLC. Total polyol content of conidia produced on glucose media varied between 5.2 and 52.2 mg g-1 for B. bassiana, 77.3 and 90.3 mg g-1 for M. anisopliae, and 26.7 and 76.1 mg g-1 for P. farinosus. The amounts of specific polyols in conidia varied significantly from media of different glucose concentrations. Mannitol was the predominant polyol in conidia of all three species, with conidia of M. anisopliae, for example, containing as much as 75.2 mg mannitol g-1 when cultured on glucose media. The amount of the lower molecular mass polyols glycerol and erythritol was greater in conidia produced on glucose media with > 50.0 g added carbon 1-1 than that in conidia produced at lower glucose concentrations. Conidia contained between 10.8 and 20.8 mg glycerol plus erythritol g-1 on glucose media with 142.7 g added carbon 1-1, depending on species. Conversely, conidia of B. bassiana and P. farinosus contained maximum amounts of trehalose ( ≤ 23.5 mg g-1) when produced on glucose media with < 50.0 g added carbon l-1, and trehalose content was considerably less at higher glucose concentrations. There were accumulations of glycerol and erythritol in conidia of all three species when grown on glycerol media with > 25.0 g added carbon 1-1; conidia of B. bassiana contained up to 154.0 mg glycerol plus erythritol g-1. hen B. bassiana and P. farinosus were grown on trehalose media, conidia contained up to 222.1 mg trehalose g-1. By contrast, conidia of M. anisopliae contained < 17.0 mg trehalose g-1 under all conditions tested. The water availability of solutions of different polyols is discussed in relation to their potential to act in osmotic adjustment during germination. The ability to manipulate polyol and trehalose content of fungal propagules may be critical in enhancing the storage life and efficacy of biological control agents.
Resumo:
The virulence to insects and tolerance to heat and UV-B radiation of conidia of entomopathogenic fungi are greatly influenced by physical, chemical, and nutritional conditions during mycelial growth. This is evidenced, for example, by the stress phenotypes of Metarhizium robertsii produced on various substrates. Conidia from minimal medium (Czapek's medium without sucrose), complex medium, and insect (Lepidoptera and Coleoptera) cadavers had high, moderate, and poor tolerance to UV-B radiation, respectively. Furthermore, conidia from minimal medium germinated faster and had increased heat tolerance and were more virulent to insects than those from complex medium. Low water-activity or alkaline culture conditions also resulted in production of conidia with high tolerance to heat or UV-B radiation. Conidia produced on complex media exhibited lower stress tolerance, whereas those from complex media supplemented with NaCl or KCl (to reduce water activity) were more tolerant to heat and UV-B than those from the unmodified complex medium. Osmotic and nutritive stresses resulted in production of conidia with a robust stress phenotype, but also were associated with low conidial yield. Physical conditions such as growth under illumination, hypoxic conditions, and heat shock before conidial production also induced both higher UV-B and heat tolerance; but conidial production was not decreased. In conclusion, physical and chemical parameters, as well as nutrition source, can induce great variability in conidial tolerance to stress for entomopathogenic fungi. Implications are discussed in relation to the ecology of entomopathogenic fungi in the field, and to their use for biological control. This review will cover recent technologies on improving stress tolerance of entomopathogenic fungi for biological control of insects.
Resumo:
There is interest in determining levels of Mycobacterium avium subsp. paratuberculosis (MAP) contamination in milk. The optimal sample preparation for raw cows' milk to ensure accurate enumeration of viable MAP by the peptide-mediated magnetic separation (PMS)-phage assay was determined. Results indicated that milk samples should be refrigerated at 4 C after collection and MAP testing should commence within 24 h, or samples can be frozen at 70 C for up to one month without loss of MAP viability. Use of Bronopol is not advised as MAP viability is affected. The vast majority (>95%) of MAP in raw milk sedimented to the pellet upon centrifugation at 2500 g for 15 min, so this milk fraction should be tested. De-clumping of MAP cells was most effectively achieved by ultrasonication of the resuspended milk pellet on ice in a sonicator bath at 37 kHz for 4 min in ‘Pulse’ mode.
Resumo:
Intake of heterocyclic amines (HCAs, carcinogens produced during cooking of meat/fish, the most abundant being PhIP, DiMeIQx and MeIQx) is influenced by many factors including type/thickness of meat and cooking method/temperature/duration. Thus, assessment of HCA dietary exposure is difficult. Protein adducts of HCAs have been proposed as potential medium-term biomarkers of exposure, e.g. PhIP adducted to serum albumin or haemoglobin. However, evidence is still lacking that HCA adducts are viable biomarkers in humans consuming normal diets. The FoodCAP project, supported by World Cancer Research Fund, developed a highly sensitive mass spectrometric method for hydrolysis, extraction and detection of acid-labile HCAs in blood and assessed their validity as biomarkers of exposure. Multiple acid/alkaline hydrolysis conditions were assessed, followed by liquid-liquid extraction, clean-up by cation-exchange SPE and quantification by UPLC-ESI-MS/ MS. Blood was analysed from volunteers who completed food diaries to estimate HCA intake based on the US National Cancer Institute’s CHARRED database. Standard HCAs were recovered quantitatively from fortified blood. In addition, PhIP/MeIQx adducts bound to albumin and haemoglobin prepared in vitro using a human liver microsome system were also detectable in blood fortified at low ppt concentrations. However, except for one sample (5pg/ml PhIP), acid-labile PhIP, 7,8-DiMeIQx, 4,8-DiMeIQx and MeIQx were not observed above the 2pg/ml limit of detection in plasma (n=35), or in serum, whole blood or purified albumin, even in volunteers with high meat consumption (nominal HCA intake >2µg/day). It is concluded that HCA blood protein adducts are not viable biomarkers of exposure. Untargeted metabolomic analyses may facilitate discovery of suitable markers.
Resumo:
Ectomycorrhizal fungi and saprotrophic microorganisms coexist and interact in the mycorrhizosphere. We review what is known regarding these interactions and how they may influence processes such as ectomycorrhiza formation, mycelial growth, and the dynamics of carbon movement to and within the rhizosphere. Particular emphasis is placed on the potential importance of interactions in decomposition of soil organic matter and degradation of persistant organic pollutants in soil. While our knowledge is currently fairly limited, it seems likely that interactions have profound effects on mycorrhizosphere processes. More extensive research is warranted to provide novel insights into mycorrhizosphere ecology and to explore the potential for manipulating the ectomycorrhizosphere environment for biotechnological purposes.
Resumo:
The role of arbuscular mycorrhizal fungi (AMF) in arsenate resistance in arbuscular mycorrhizal associations is investigated here for two Glomus spp. isolated from the arsenate-resistant grass Holcus lanatus. Glomus mosseae and Glomus caledonium were isolated from H. lanatus growing on an arsenic-contaminated mine-spoil soil. The arsenate resistance of spores was compared with nonmine isolates using a germination assay. Short-term arsenate influx into roots and long-term plant accumulation of arsenic by plants were also investigated in uninfected arsenate resistant and nonresistant plants and in plants infected with mine and nonmine AMF. Mine AMF isolates were arsenate resistant compared with nonmine isolates. Resistant and nonresistant G. mosseae both suppressed high-affinity arsenate/phosphate transport into the roots of both resistant and nonresistant H. lanatus. Resistant AMF colonization of resistant H. lanatus growing in contaminated mine spoil reduced arsenate uptake by the host. We conclude that AMF have evolved arsenate resistance, and conferred enhanced resistance on H. lanatus.
Resumo:
Isolates of the endomycorrhizal fungus Hymenoscyphus ericae and the ectomycorrhizal fungus Hebeloma crustuliniforme from soils uncontaminated with AsO4/3-, were compared with regard to their sensitivity to AsO4/3- in solution culture. When grown in liquid media amended with a range of AsO4/3- concentrations, H. ericae demonstrated reduced sensitivity to AsO4/3- compared to H. crustuliniforme. The concentrations causing 50% inhibition of growth (EC50) were 1.33 mol/m3 and 0.33 mol/m3, respectively, for H. ericae and H. crustuliniforme. The compound AsO4/3- is a PO4/3- analogue for the plasmalemma PO4/3- transporter. The presence of PO4/3- in the media at high concentrations ameliorated the toxic effects of AsO4/3- in both the ericoid and ectomycorrhizal fungi. This could be due to both suppression of the PO4/3- transporter under high phosporus status and competition of PO4/3- with AsO4/3- for the transport protein. The kinetics of AsO4/3- influx in H. ericae and H. crustuliniforme were also investigated. Hymenoscyphus ericae demonstrated a high K(m) value, 0.071 mol/m3, consistent with values obtained for AsO4/3- -tolerant plants. We suggest that the high K(m) value may be a mechanism used by H. ericae to express reduced AsO4/3- sensitivity. The ecological significance of this reduced sensitivity is also discussed.
Resumo:
The pathways of biotransformation of 4-fluorobiphenyl (4FBP) by the ectomycorrhizal fungus Tylospora fibrilosa and several other mycorrhizal fungi were investigated by using 19F nuclear magnetic resonance (NMR) spectroscopy in combination with 14C radioisotope-detected high-performance liquid chromatography (14C- HPLC). Under the conditions used in this study T. fibrillosa and some other species degraded 4FBP. 14C-HPLC profiles indicated that there were four major biotransformation products, whereas 19F NMR showed that there were six major fluorine-containing products. We confirmed that 4-fluorobiphen-4'-ol and 4-fluorobiphen-3'-ol were two of the major products formed, but no other products were conclusively identified. There was no evidence for the expected biotransformation pathway (namely, meta cleavage of the less halogenated ring), as none of the expected products of this route were found. To the best of our knowledge, this is the first report describing intermediates formed during mycorrhizal degradation of halogenated biphenyls.
Resumo:
A number of ectomycorrhizal (ECM) fungi, from sites uncontaminated by toxic metals, were investigated to determine their sensitivity to Cd2-, Pb2+, Zn2+ and Sb3-, measured as an inhibition of fungal biomass production. Isolates were grown in liquid media amended with the metals, individually (over a range of concentrations) and in combination (at single concentrations) to determine any significant interactions between the metals. Significant interspecific variation in sensitivity to Cd2+ and Zn2+ was recorded, while Pb2+ and Sb3- individually had little effect. The presence of Pb2+ and Sb3- in the media did however, ameliorate Cd2+ and Zn2+ toxicity in some circumstances. Interactions between Cd2+ and Zn2+ were investigated further over a range of concentrations. Zn2+ was found to significantly ameliorate the toxicity of Cd2+ to three of the four isolates tested. The influence of Zn2+ varied between ECM species and with the concentrations of metals tested.
Resumo:
The effects of potentially toxic metals on ectomycorrhizal (ECM) fungi and their higher plant hosts are examined in this review. Investigations at a species and community level have revealed wide inter- and intraspecific variation in sensitivity to metals. Adaptive and constitutive mechanisms of ECM tolerance are proposed and discussed in relation to proven tolerance mechanisms in bacteria, yeasts and plants. Problems with methodology and research priorities are highlighted. These include the need for a detailed understanding of the genetic basis of tolerance in the ECM symbiosis, and for studies of ECM community dynamics in polluted sites.
Resumo:
Experiments were conducted to determine if two ectomycorrhizal fungi (Paxillus involutus and Suillus variegatus) could degrade 2,4-dichlorophenol both in axenic liquid culture and during symbiosis with a host tree species Pinus sylvestris. Both fungi readily degraded 2,4- dichlorophenol in batch culture with similar rates of mineralization on a biomass basis. Up to 17% of the 2,4-dichlorophenol was mineralized over a 17 day period. Growth of the fungi in symbiosis with P. sylvestris stimulated greater mineralization than when fungi were grown in absence of the host. S. variegatus was more efficient than P. involutus (in the presence of P. sylveslris) at mineralizing 2,4- dichlorophenol. Mineralization in vermiculite culture was greatly reduced compared to liquid culture. Only 3% of the 2,4-dichlorophenol was mineralized after 13 days in vermiculite culture for the most efficient degrading treatment.
Resumo:
Heterocyclic aromatic amines (HCA) are carcinogenic mutagens formed during cooking of protein-rich foods. HCA residues adducted to blood proteins have been postulated as biomarkers of HCA exposure. However, the viability of quantifying HCAs following hydrolytic release from adducts in vivo and correlation with dietary intake are unproven. To definitively assess the potential of labile HCA-protein adducts as biomarkers, a highly sensitive UPLC-MS/MS method was validated for four major HCAs: 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx), 2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline (4,8-DiMeIQx) and 2-amino-3,7,8-trimethylimidazo[4,5-f]quinoxaline (7,8-DiMeIQx). Limits of detection were 1e5 pg/ml plasma and recoveries 91e115%. Efficacy of hydrolysis was demonstrated by HCA-protein adducts synthesised in vitro. Plasma and 7-day food diaries were collected from 122 fasting adults consuming their habitual diets. Estimated HCA intakes ranged from 0 to 2.5 mg/day. An extensive range of hydrolysis conditions was examined for release of adducted HCAs in plasma. HCA was detected in only one sample (PhIP, 9.7 pg/ml), demonstrating conclusively for the first time that acid-labile HCA adducts do not reflect dietary HCA intake and are present at such low concentrations that they are not feasible biomarkers of exposure. Identification of biomarkers remains important. The search should concentrate on stabilised HCA peptide markers and use of untargeted proteomic and metabolomic approaches.
Resumo:
Portugal has been the world leader in the cork sector in terms of exports, employing ten thousands of workers. In this working activity, the permanent contact with cork may lead to the exposure to fungi, raising concerns as potential occupational hazards in cork industry. The application of molecular tools is crucial in this setting, since fungal species with faster growth rates may hide other species with clinical relevance, such as species belonging to P. glabrum and A. fumigatus complexes. A study was developed aiming at assessing fungal contamination due to Aspergillus fumigatus complex and Penicillium glabrum complex by molecular methods in three cork industries in the outskirt of Lisbon city.