957 resultados para VeriStand, Custom devices, Hardware in the loop, LabView, FPGA, ECU
Resumo:
Fast synaptic neurotransmission is mediated by transmitter-activated conformational changes in ligand-gated ion channel receptors, culminating in opening of the integral ion channel pore. Human hereditary hyperekplexia, or startle disease, is caused by mutations in both the intracellular or extracellular loops flanking the pore-lining M2 domain of the glycine receptor alpha 1 subunit. These flanking domains are designated the M1-M2 loop and the M2-M3 loop respectively. We show that four startle disease mutations and six additional alanine substitution mutations distributed throughout both loops result in uncoupling of the ligand binding sites from the channel activation gate. We therefore conclude that the M1-M2 and M2-M3 loops act in parallel to activate the channel. Their locations strongly suggest that they act as hinges governing allosteric control of the M2 domain. As the members of the ligand-gated ion channel superfamily share a common structure, this signal transduction model may apply to all members of this superfamily.
Resumo:
PURPOSE: To compare the ability of Fourier-domain (FD) optical coherence tomography (3D OCT-1000; Top, con, Tokyo, Japan) and time domain (TD) OCT (Stratus; Carl Zeiss Meditec Inc, Dublin, California, USA) to detect axonal loss in eyes with band atrophy (BA) of the optic nerve. DESIGN: Cross-sectional study. METHODS: Thirty-six eyes from 36 patients with BA and temporal visual field (VF) defect from chiasmal compression and 36 normal eyes were studied. Subjects were submitted to standard automated perimetry and macular and retinal nerve fiber layer (RNFL) measurements were taken using 3D OCT-1000 and Stratus OCT. Receiver operating characteristic (ROC) curves were calculated for each parameter. Spearman correlation coefficients were obtained to evaluate the relationship between RNFL and macular thickness parameters and severity of VF loss. Measurements from the two devices were compared. RESULTS: Regardless of OCT device, all RNFL and macular thickness parameters were significantly lower in eyes with BA compared with normal eyes, but no statistically significant difference was found with regard to the area under the ROC curve. Structure-function relationships were also similar for the two devices. In both groups, RNFL and macular thickness measurements were generally and in some cases significantly smaller with 3D OCT-1000 than with Stratus OCT. CONCLUSIONS: The introduction of FD technology did not lead to better discrimination ability for detecting BA of the optic nerve compared with TD technology when using the software currently provided by the manufacturer. 3D OCT-1000 FD OCT RNFL and macular measurements were generally smaller than TD Stratus OCT measurements. Investigators should be aware of this fact when comparing measurements obtained with these two devices. (Am J Oplathalmol 2009;147: 56-63. (c) 2009 by Elsevier Inc. All rights reserved.)
Resumo:
OBJECTIVE To evaluate the effect of the environment and the observer on the measurement of blood pressure (BP) as well as to compare home BP (HBP) and ambulatory BP (ABP) measurements in the diagnosis of white coat hypertension (WCH) and masked hypertension (MH) in children and adolescents with hypertension (HT). METHODS BP of 40 patients with HT (75% of which had secondary HT and were on antihypertensive medication), mean age 12.1 years was evaluated through casual measurements at the clinic and at the HT unit, HBP for 14 days with the OMRON HEM 705 CP monitor (Omron, Tokyo, Japan) and ABP performed with SPACELABS 90207 (Spacelabs, Redmond, WA), for 24 h. RESULTS HT was diagnosed at the doctor`s office by ABP and HBP in 30/40, 27/40, and 31/40 patients, respectively. Based on office BP and ABP, 60% of patients were normotensive, 17.5% HT, 7.5% had WCH, and 15% had MH, whereas based on office BP and HBP 65, 12.5, 10, and 12.5% of patients were classified according to these diagnoses, respectively. There was considerable diagnostic agreement of HT by ABP and HBP (McNemar test, P < 0.01) (kappa = 0.56). CONCLUSION In hypertensive children and adolescents, HBP and ABP present comparable results. HBP appears to be a useful diagnostic test for the detection of MH and WCH in pediatric patients.
Resumo:
The Syk tyrosine kinase family plays an essential role in immunoreceptor tyrosine-based activation motif (ITAM) signaling. The binding of Syk to tyrosine-phosphorylated ITAM subunits of immunoreceptors, such as Fc epsilon RI on mast cells, results in a conformational change, with an increase of enzymatic activity of Syk. This conformational change exposes the COOH-terminal tail of Syk, which has three conserved Tyr residues (Tyr-623, Tyr-624, and Tyr-625 of rat Syk). To understand the role of these residues in signaling, wild-type and mutant Syk with these three Tyr mutated to Phe was expressed in Syk-deficient mast cells. There was decreased Fc epsilon RI-induced degranulation, nuclear factor for T cell activation and NF kappa B activation with the mutated Syk together with reduced phosphorylation of MAP kinases p38 and p42/44 ERK. In non-stimulated cells, the mutated Syk was more tyrosine phosphorylated predominantly as a result of autophosphorylation. In vitro, there was reduced binding of mutated Syk to phosphorylated ITAM due to this increased phosphorylation. This mutated Syk from non-stimulated cells had significantly reduced kinase activity toward an exogenous substrate, whereas its autophosphorylation capacity was not affected. However, the kinase activity and the autophosphorylation capacity of this mutated Syk were dramatically decreased when the protein was dephosphorylated before the in vitro kinase reaction. Furthermore, mutation of these tyrosines in the COOH-terminal region of Syk transforms it to an enzyme, similar to its homolog ZAP-70, which depends on other tyrosine kinases for optimal activation. In testing Syk mutated singly at each one of the tyrosines, Tyr-624 but especially Tyr-625 had the major role in these reactions. Therefore, these results indicate that these tyrosines in the tail region play a critical role in regulating the kinase activity and function of Syk.
Resumo:
The objective was to evaluate the influence of dental metallic artefacts on implant sites using multislice and cone-beam computed tomography techniques. Ten dried human mandibles were scanned twice by each technique, with and without dental metallic artefacts. Metallic restorations were placed at the top of the alveolar ridge adjacent to the mental foramen region for the second scanning. Linear measurements (thickness and height) for each cross-section were performed by a single examiner using computer software. All mandibles were analysed at both the right and the left mental foramen regions. For the multislice technique, dental metallic artefact produced an increase of 5% in bone thickness and a reduction of 6% in bone height; no significant differences (p > 0.05) were detected when comparing measurements performed with and without metallic artefacts. With respect to the cone-beam technique, dental metallic artefact produced an increase of 6% in bone thickness and a reduction of 0.68% in bone height. No significant differences (p > 0.05) were observed when comparing measurements performed with and without metallic artefacts. The presence of dental metallic artefacts did not alter the linear measurements obtained with both techniques, although its presence made the location of the alveolar bone crest more difficult.
Resumo:
Inflammatory cytokines contribute to periapical tissue destruction. Their activity is potentially regulated by suppressors of cytokine signaling (SOCS), which down-regulate signal transduction as part of an inhibitory feedback loop. We investigated the expression of the cytokines tumor necrosis factor alpha (TNF-alpha); interleukin (IL)-10 and RANKL; and SOCS-1, -2, and -3 by real-time polymerase chain reaction in 57 periapical granulomas and 38 healthy periapical tissues. Periapical granulomas exhibited significantly higher SOCS-1, -2, and -3, TNF-alpha, IL-10, and RANKL messenger RNA levels when compared with healthy controls. Significant positive correlations were found between SOCS1 and IL-10 and between SOCS3 and IL-10. Significant inverse correlations were observed between SOCS1 and TNF-alpha, SOCS1 and RANKL, and SOCS3 and TNF-alpha. Increased SOCS-1, -2, and -3 messenger RNA levels in periapical granulomas may be related to the downregulation of inflammatory cytokines in these lesions; therefore, SOCS molecules may play a role in the dynamics of periapical granulomas development. (J Endod 2008;34:1480-1484)
Resumo:
Objectives. The diagnosis of root fractures by conventional radiographs is still difficult because of limitations of 2D images. Cone-beam volumetric tomography improves the diagnosis capacity in dentistry, such as increased radiation dose to the patient and presence of artifacts on the image. Study design. This study compared the images obtained on conventional periapical radiographs and 3D scans (Accuitomo 3DX) for the diagnosis of root fractures. Twenty patients with suspected root fractures were submitted to examination by periapical radiography and CBCT. Two professionals, unaware of the symptomatology, examined these radiographs and CBCT images according to pre-established scores, which were later checked against the signs and symptoms. Results. The results revealed statistical difference for cone-beam volumetric tomography compared with conventional radiographs in the diagnosis of root fractures. Conclusion. It could be concluded that cone-beam volumetric tomography was better than conventional radiography in the diagnosis of root fractures, thereby constituting an excellent alternative for diagnosis in general practice. (Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009; 108: 270-277)
Resumo:
The complete arrangement of genes in the mitochondrial (mt) genome is known for 12 species of insects, and part of the gene arrangement in the mt genome is known for over 300 other species of insects. The arrangement of genes in the mt genome is very conserved in insects studied, since all of the protein-coding and rRNA genes and most of the tRNA genes are arranged in the same way. We sequenced the entire mt genome of the wallaby louse, Heterodoxus macropus, which is 14,670 bp long and has the 37 genes typical of animals and some noncoding regions. The largest noncoding region is 73 bp long (93% A+T), and the second largest is 47 bp long (92% AST). Both of these noncoding regions seem to be able to form stem-loop structures. The arrangement of genes in the mt genome of this louse is unlike that of any other animal studied. All tRNA genes have moved and/or inverted relative to the ancestral gene arrangement of insects, which is present in the fruit fly Drosophila yakuba. At least nine protein-coding genes (atp6, atp8, cox2, cob, nad1-nad3, nad5, and nad6) have moved; moreover, four of these genes (atp6, atp8, nad1, and nad3) have inverted. The large number of gene rearrangements in the mt genome of H. macropus is unprecedented for an arthropod.
Resumo:
Behavioral and cognitive interventions for people with psychosis have a long and distinguished history, although the evidence for their application to young people remains limited. We anticipate that the next decades will show substantial research into psychological intervention for this population. Important targets will include the management of environmental stressors, reduction of substance misuse, and promotion of early treatment. Psychological management of positive symptoms, depression, and suicidal behavior will continue to be critical objectives. Important secondary prevention goals will be the retention of cognitive functioning, vocational options, social skills, and social network support, including appropriate family support. We expect primary prevention to include both universal programs and interventions for adolescents at particularly high risk. Technical innovations will include increasing use of Internet-based intervention and behavior cueing devices. Pressures for intervention brevity will continue, as will problems with the systematic delivery of effective procedures.
Resumo:
We studied the internal transcribed spacer 2 (ITS2) in twenty-two spp. of ticks from the subfamily Rhipicephalinae. A 104-109 base pair (bp) region was Imperfectly repeated In most ticks studied. Mapping the number of repeat copies on to a phylogeny from the ITS2 showed that there have been many Independent gains and losses of repeats. Comparison of the sequences of the repeat copies Indicated that in most taxa concerted evolution had played little if any role in the evolution of these regions, as the copies clustered by sequence position rather than species, In our putative secondary structure, each repeat copy can fold into a distinct and almost identical stem-loop complex; a gain or loss of a repeat copy apparently does not impair the function of the ITS2 in these ticks.
Resumo:
In this paper we examine the effects of varying several experimental parameters in the Kane quantum computer architecture: A-gate voltage, the qubit depth below the silicon oxide barrier, and the back gate depth to explore how these variables affect the electron density of the donor electron. In particular, we calculate the resonance frequency of the donor nuclei as a function of these parameters. To do this we calculated the donor electron wave function variationally using an effective-mass Hamiltonian approach, using a basis of deformed hydrogenic orbitals. This approach was then extended to include the electric-field Hamiltonian and the silicon host geometry. We found that the phosphorous donor electron wave function was very sensitive to all the experimental variables studied in our work, and thus to optimize the operation of these devices it is necessary to control all parameters varied in this paper.
Resumo:
Work-related falls continues to be one of the leading causes of fatalities in the Australian construction industry, and the failure to use fall protection equipment, such as fall-arrest harnesses and arresting devices, has been found to be a contributing factor. In an attempt to gain an understanding of the issues surrounding the use of fallarrest harness systems by construction workers a study involving semi-structured interviews of 15 male construction workers was carried out at three construction sites. The majority of interviewees commented that there was discomfort in wearing a fall-arrest harness; that there were a number of problems when anchored via an arresting device; and that using a fall-arrest system reduced productivity. Most of the interviewees considered that they needed safety precautions against falls, and they expressed the view that workers’ attitudes towards safety depended critically upon their supervisors’ attitude towards safety. It was also found that workers were not trained in rescue procedures. Interviewees expressed concern that retrieval of a suspended worker may not be carried out in time to prevent the onset of suspension trauma. A number of issues were identified which require further research, such as, investigation into suspension trauma, harness and arresting device design, training provided to workers, and the provision for rescues.
Resumo:
The ability to monitor fetal heart rate is vital during late pregnancy and labor in order to evaluate fetal well-being. Current monitoring practice is essentially based on external cardiotocography and, less frequently, during labor, invasive fetal scalp electrocardiography. Many current and envisaged applications could benefi t from simpler devices using a 3-lead ECG confi guration. We are designing a maternity support belt with an embedded wireless 3-lead ECG sensor, and have investigated the infl uence of the ground electrode position on signal quality. Data from over 100 pregnant women was collected with the ground electrode placed in 3 locations in order to determine optimum electrode placement and belt form factor.
Resumo:
A fast and direct surface plasmon resonance (SPR) method for the kinetic analysis of the interactions between peptide antigens and immobilised monoclonal antibodies (mAb) has been established. Protocols have been developed to overcome the problems posed by the small size of the analytes (< 1600 Da). The interactions were well described by a simple 1:1 bimolecular interaction and the rate constants were self-consistent and reproducible. The key features for the accuracy of the kinetic constants measured were high buffer flow rates, medium antibody surface densities and high peptide concentrations. The method was applied to an extensive analysis of over 40 peptide analogues towards two distinct anti-FMDV antibodies, providing data in total agreement with previous competition ELISA experiments. Eleven linear 15-residue synthetic peptides, reproducing all possible combinations of the four replacements found in foot-and-mouth disease virus (FMDV) field isolate C-S30, were evaluated. The direct kinetic SPR analysis of the interactions between these peptides and three anti-site A mAbs suggested additivity in all combinations of the four relevant mutations, which was confirmed by parallel ELISA analysis. The four-point mutant peptide (A15S30) reproducing site A from the C-S30 strain was the least antigenic of the set, in disagreement with previously reported studies with the virus isolate. Increasing peptide size from 15 to 21 residues did not significantly improve antigenicity. Overnight incubation of A15S30 with mAb 4C4 in solution showed a marked increase in peptide antigenicity not observed for other peptide analogues, suggesting that conformational rearrangement could lead to a stable peptide-antibody complex. In fact, peptide cyclization clearly improved antigenicity, confirming an antigenic reversion in a multiply substituted peptide. Solution NMR studies of both linear and cyclic versions of the antigenic loop of FMDV C-S30 showed that structural features previously correlated with antigenicity were more pronounced in the cyclic peptide. Twenty-six synthetic peptides, corresponding to all possible combinations of five single-point antigenicity-enhancing replacements in the GH loop of FMDV C-S8c1, were also studied. SPR kinetic screening of these peptides was not possible due to problems mainly related to the high mAb affinities displayed by these synthetic antigens. Solution affinity SPR analysis was employed and affinities displayed were generally comparable to or even higher than those corresponding to the C-S8c1 reference peptide A15. The NMR characterisation of one of these multiple mutants in solution showed that it had a conformational behaviour quite similar to that of the native sequence A15 and the X-ray diffraction crystallographic analysis of the peptide ? mAb 4C4 complex showed paratope ? epitope interactions identical to all FMDV peptide ? mAb complexes studied so far. Key residues for these interactions are those directly involved in epitope ? paratope contacts (141Arg, 143Asp, 146His) as well as residues able to stabilise a particular peptide global folding. A quasi-cyclic conformation is held up by a hydrophobic cavity defined by residues 138, 144 and 147 and by other key intrapeptide hydrogen bonds, delineating an open turn at positions 141, 142 and 143 (corresponding to the Arg-Gly-Asp motif).
Resumo:
Results on the use of a double a-SiC:H p-i-n heterostructure for signal multiplexing and demultiplexing applications in the visible range are presented. Pulsed monochromatic beams together (multiplexing mode), or a single polychromatic beam (demultiplexing mode) impinge on the device and are absorbed, accordingly to their wavelength. Red, green and blue pulsed input channels are transmitted together, each one with a specific transmission rate. The combined optical signal is analyzed by reading out, under different applied voltages, the generated photocurrent. Results show that in the multiplexing mode the output signal is balanced by the wavelength and transmission rate of each input channel, keeping the memory of the incoming optical carriers. In the demultiplexing mode the photocurrent is controlled by the applied voltage allowing regaining the transmitted information. A physical model supported by a numerical simulation gives insight into the device operation.