944 resultados para Veículo flex fuel
Resumo:
Food industries like biscuit and confectionary use significant amount of fossil fuel for thermal energy. Biscuit manufacturing in India is carried out both by organized and unorganized sector. The ratio of organized to unorganized sector is 60 : 40 (1). The total biscuit manufacturing in the organized sector India in 2008 was about 1.7 million metric tons (1). Accounting for the unorganized sector in India, the total biscuit manufacturing would have been about 2.9 million metric tons/annum. A typical biscuit baking is carried in a long tunnel kiln with varying temperature in different zones. Generally diesel is used to provide the necessary heat energy for the baking purpose, with temperature ranging from 190 C in the drying zone to about 300 C in the baking area and has to maintain in the temperature range of +/- 5 C. Typical oil consumption is about 40 litres per ton of biscuit production. The paper discusses the experience in substituting about 120 lts per hour kiln for manufacturing about 70 tons of biscuit daily. The system configuration consists of a 500 kg/hr gasification system comprising of a reactor, multicyclone, water scrubbers, and two blowers for maintaining the constant gas pressure in the header before the burners. Cold producer gas is piped to the oven located about 200 meters away from the gasifier. Fuel used in the gasification system is coconut shells. All the control system existing on the diesel burner has been suitably adapted for producer gas operation to maintain the total flow, A/F control so as to maintain the temperature. A total of 7 burners are used in different zones. Over 17000 hour of operation has resulted in replacing over 1800 tons of diesel over the last 30 months. The system operates for over 6 days a week with average operational hours of 160. It has been found that on an average 3.5 kg of biomass has replaced one liter of diesel.
Resumo:
A wireless fuel quantity indication system (FQIS) has been developed using an RFID-enabled sensing platform. The system comprises a fully passive tag, modified reader protocol, capacitive fuel probe, and auxiliary antenna for additional energy harvesting. Results of fluid testing show sensitivity to changes in fluid height of less than 0.25in. An RF-DC harvesting circuit was developed, which delivers up to 5dBm of input power through a remote radio frequency (RF) source. Testing was conducted in a loaded reverberation chamber to emulate the fuel tank environment. Results demonstrate feasibility of the remote source to power the sensor with less than 1W of maximum transmit power and under 100ms dwell time (100mW average power) into the tank. This indicates adequate coverage for large transport aircraft at safe operating levels with a sample rate of up to 1 sample/s.
Resumo:
Hydrogen, either in pure form or as a gaseous fuel mixture specie enhances the fuel conversion efficiency and reduce emissions in an internal combustion engine. This is due to the reduction in combustion duration attributed to higher laminar flame speeds. Hydrogen is also expected to increase the engine convective heat flux, attributed (directly or indirectly) to parameters like higher adiabatic flame temperature, laminar flame speed, thermal conductivity and diffusivity and lower flame quenching distance. These factors (adversely) affect the thermo-kinematic response and offset some of the benefits. The current work addresses the influence of mixture hydrogen fraction in syngas on the engine energy balance and the thermo-kinematic response for close to stoichiometric operating conditions. Four different bio-derived syngas compositions with fuel calorific value varying from 3.14 MJ/kg to 7.55 MJ/kg and air fuel mixture hydrogen fraction varying from 7.1% to 14.2% by volume are used. The analysis comprises of (a) use of chemical kinetics simulation package CHEMKIN for quantifying the thermo-physical properties (b) 0-D model for engine in-cylinder analysis and (c) in-cylinder investigations on a two-cylinder engine in open loop cooling mode for quantifying the thermo-kinematic response and engine energy balance. With lower adiabatic flame temperature for Syngas, the in-cylinder heat transfer analysis suggests that temperature has little effect in terms of increasing the heat flux. For typical engine like conditions (700 K and 25 bar at CR of 10), the laminar flame speed for syngas exceeds that of methane (55.5 cm/s) beyond mixture hydrogen fraction of 11% and is attributed to the increase in H based radicals. This leads to a reduction in the effective Lewis number and laminar flame thickness, potentially inducing flame instability and cellularity. Use of a thermodynamic model to assess the isolated influence of thermal conductivity and diffusivity on heat flux suggests an increase in the peak heat flux between 2% and 15% for the lowest (0.420 MW/m(2)) and highest (0.480 MW/m(2)) hydrogen containing syngas over methane (0.415 MW/m(2)) fueled operation. Experimental investigations indicate the engine cooling load for syngas fueled engine is higher by about 7% and 12% as compared to methane fueled operation; the losses are seen to increase with increasing mixture hydrogen fraction. Increase in the gas to electricity efficiency is observed from 18% to 24% as the mixture hydrogen fraction increases from 7.1% to 9.5%. Further increase in mixture hydrogen fraction to 14.2% results in the reduction of efficiency to 23%; argued due to the changes in the initial and terminal stages of combustion. On doubling of mixture hydrogen fraction, the flame kernel development and fast burn phase duration decrease by about 7% and 10% respectively and the terminal combustion duration, corresponding to 90%-98% mass burn, increases by about 23%. This increase in combustion duration arises from the cooling of the near wall mixture in the boundary layer attributed to the presence of hydrogen. The enhancement in engine cooling load and subsequent reduction in the brake thermal efficiency with increasing hydrogen fraction is evident from the engine energy balance along with the cumulative heat release profiles. Copyright (C) 2015, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
Resumo:
Understanding the combustion characteristics of fuel droplets laden with energetic nanoparticles (NP) is pivotal for lowering ignition delay, reducing pollutant emissions and increasing the combustion efficiency in next generation combustors. In this study, first we elucidate the feedback coupling between two key interacting mechanisms, namely, secondary atomization and particle agglomeration; that govern the effective mass fraction of NPs within the droplet. Second, we show how the initial NP concentration modulates their relative dominance leading to a masterslave configuration. Secondary atomization of novel nanofuels is a crucial process since it enables an effective transport of dispersed NPs to the flame (a pre-requisite condition for NPs to burn). Contrarily, NP agglomeration at the droplet surface leads to shell formation thereby retaining NPs inside the droplet. In particular, we show that at dense concentrations shell formation (master process) dominates over secondary atomization (slave) while at dilute particle loading it is the high frequency bubble ejections (master) that disrupt shell formation (slave) through its rupture and continuous outflux of NPs. This results in distinct combustion residues at dilute and dense concentrations, thereby providing a method of manufacturing flame synthesized microstructures with distinct morphologies.
Resumo:
Magnesium aluminate spinel (MgAl2O4) forms an interesting system having tetrahedral and octahedral voids filled with near similar sized divalent Mg2+ and trivalent Al3+ cations. Structural disorder (e.g., Mg-Al antisite defects) can be tuned by synthetic conditions. This study reports the evolution of Mg/Al disorder in MgAl2O4 prepared by combustion synthesis using different types of fuels. The effect of nature of fuel and the final calcination temperature (600 degrees C-900 degrees C for 9h) on degree of cation ordering has been investigated combining powder X-ray (XRD) and neutron (NPD) diffraction. The results indicate very high degree of inversion in the samples crystallized at low annealing temperature, which on further annealing reduces toward the thermodynamically stable values. Raman spectroscopy, probing MgO4, and AlO4 tetrahedral bonds, confirmed the results at a local level.
Resumo:
Experimental data on evaporation of droplets of decane, Jet-A1, and Jet-A1 surrogate are generated using a spray in crossflow configuration. The advantage of a crossflow configuration is that it enables us to study droplet evaporation under forced convective conditions involving droplet diameters of size relevant in practical combustors. Specifically, spray from an airblast atomizer is injected into a preheated crossflow of air and the resulting spray is characterized in terms of spray structure along with droplet size and velocity. An existing correlation for the spray trajectory is modified to incorporate the effect of elevated temperature, and is found to be in good agreement with the experimental data. Droplet sizes and velocities are measured at different locations along the crossflow direction to assess droplet evaporation. Specifically, droplets having size less than 25-mu m are selected for further analysis since these droplets are observed to exhibit velocities which are aligned with the crossflow. By comparing the droplet diameter profiles at upstream and downstream locations, the evaporation constant k for the d(2)-law is obtained iteratively. To assess the efficacy of the values of k obtained, the calculated droplet size distribution using the proposed k values at the downstream location is compared with the measured droplet size distribution at that location. A reasonably good match is found for all the three liquids confirming the validity of the analysis. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
We report the diffusion characteristics of water vapor through two different porous media, viz., membrane electrode assembly (MEA) and gas diffusion layer (GDL) in a nonoperational fuel cell. Tunable diode laser absorption spectroscopy (TDLAS) was employed for measuring water vapor concentration in the test channel. Effects of the membrane pore size and the inlet humidity on the water vapor transport are quantified through mass flux and diffusion coefficient. Water vapor transport rate is found to be higher for GDL than for MEA. The flexibility and wide range of application of TDLAS in a fuel cell setup is demonstrated through experiments with a stagnant flow field on the dry side.
Resumo:
A fuel optimal nonlinear sub-optimal guidance scheme is presented in this paper for soft landing of a lunar craft during the powered descent phase. The recently developed Generalized Model Predictive Static Programming (G-MPSP) is used to compute the required magnitude and angle of the thrust vector. Both terminal position and velocity vector are imposed as hard constraints, which ensures high position accuracy and facilitates initiation of vertical descent at the end of the powered descent phase. A key feature of the G-MPSP algorithm is that it converts the nonlinear dynamic programming problem into a low-dimensional static optimization problem (of the same dimension as the output vector). The control history update is done in closed form after computing a time-varying weighting matrix through a backward integration process. This feature makes the algorithm computationally efficient, which makes it suitable for on-board applications. The effectiveness of the proposed guidance algorithm is demonstrated through promising simulation results.
Resumo:
In this paper the soft lunar landing with minimum fuel expenditure is formulated as a nonlinear optimal guidance problem. The realization of pinpoint soft landing with terminal velocity and position constraints is achieved using Model Predictive Static Programming (MPSP). The high accuracy of the terminal conditions is ensured as the formulation of the MPSP inherently poses final conditions as a set of hard constraints. The computational efficiency and fast convergence make the MPSP preferable for fixed final time onboard optimal guidance algorithm. It has also been observed that the minimum fuel requirement strongly depends on the choice of the final time (a critical point that is not given due importance in many literature). Hence, to optimally select the final time, a neural network is used to learn the mapping between various initial conditions in the domain of interest and the corresponding optimal flight time. To generate the training data set, the optimal final time is computed offline using a gradient based optimization technique. The effectiveness of the proposed method is demonstrated with rigorous simulation results.
Resumo:
With the pressing need to meet an ever-increasing energy demand, the combustion systems utilizing fossil fuels have been the major contributors to carbon footprint. As the combustion of conventional energy resources continue to produce significant Green House gas (GHG) emissions, there is a strong emphasis to either upgrade or find an energy-efficient eco-friendly alternative to the traditional hydrocarbon fuels. With recent developments in nanotechnology, the ability to manufacture materials with custom tailored properties at nanoscale has led to the discovery of a new class of high energy density fuels containing reactive metallic nanoparticles (NPs). Due to the high reactive interfacial area and enhanced thermal and mass transport properties of nanomaterials, the high heat of formation of these metallic fuels can now be released rapidly, thereby saving on specific fuel consumption and hence reducing GHG emissions. In order to examine the efficacy of nanofuels in energetic formulations, it is imperative to first study their combustion characteristics at the droplet scale that form the fundamental building block for any combustion system utilizing liquid fuel spray. During combustion of such multiphase, multicomponent droplets, the phenomenon of diffusional entrapment of high volatility species leads to its explosive boiling (at the superheat limit) thereby leading to an intense internal pressure build-up. This pressure upsurge causes droplet fragmentation either in form of a microexplosion or droplet puffing followed by atomization (with formation of daughter droplets) featuring disruptive burning. Both these atomization modes represent primary mechanisms for extracting the high oxidation energies of metal NP additives by exposing them to the droplet flame (with daughter droplets acting as carriers of NPs). Atomization also serves as a natural mechanism for uniform distribution and mixing of the base fuel and enhancing burning rates (due to increase in specific surface area through formation of smaller daughter droplets). However, the efficiency of atomization depends on the thermo-physical properties of the base fuel, NP concentration and type. For instance, at dense loading NP agglomeration may lead to shell formation which would sustain the pressure upsurge and hence suppress atomization thereby reducing droplet gasification rate. Contrarily, the NPs may act as nucleation sites and aid boiling and the radiation absorption by NPs (from the flame) may lead to enhanced burning rates. Thus, nanoadditives may have opposing effects on the burning rate depending on the relative dominance of processes occurring at the droplet scale. The fundamental idea in this study is to: First, review different thermo-physical processes that occur globally at the droplet and sub-droplet scale such as surface regression, shell formation due to NP agglomeration, internal boiling, atomization/NP transport to flame zone and flame acoustic interaction that occur at the droplet scale and second, understand how their interaction changes as a function of droplet size, NP type, NP concentration and the type of base fuel. This understanding is crucial for obtaining phenomenological insights on the combustion behavior of novel nanofluid fuels that show great promise for becoming the next-generation fuels. (C) 2016 Elsevier Ltd. All rights reserved.
Resumo:
Current global energy scenario and the environmental deterioration aspect motivates substituting fossil fuel with a renewable energy resource - especially transport fuel. This paper reviews the current status of trending biomass to liquid (BTL) conversion processes and focuses on the technological developments in Fischer Tropsch (FT) process. FT catalysts in use, and recent understanding of FT kinetics are explored. Liquid fuels produced via FT process from biomass derived syngas promises an attractive, clean, carbon neutral and sustainable energy source for the transportation sector. Performance of the FT process with various catalysts, operating conditions and its influence on the FT products are also presented. Experience from large scale commercial installations of FT plants, primarily utilizing coal based gasifiers, are discussed. Though biomass gasification plants exist for power generation via gas engines with power output of about 2 MWe; there are only a few equivalent sized FT plants for biomass derived syngas. This paper discusses the recent developments in conversion of biomass to liquid (BTL) transportation fuels via FT reaction and worldwide attempts to commercialize this process. All the data presented and analysed here have been consolidated from research experiences at laboratory scale as well as from industrial systems. Economic aspects of BTL are reviewed and compared. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Pulverized coal combustion in tangentially fired furnaces with fuel rich/lean burners was investigated for three low volatile coals. The burners were operated under the conditions with varied value N-d, which means the ratio of coal concentration of the fuel rich stream to that of the fuel lean stream. The wall temperature distributions in various positions were measured and analyzed. The carbon content in the char and Nox emission were detected under various conditions. The new burners with fuel rich/lean streams were utilized in a thermal power station to burn low volatile coal. The results show that the N-d value has significant influences on the distributions of temperature and char burnout. There exists an optimal N-d value under which the carbon content in the char and the Nox emission is relatively low. The coal ignition and Nox emission in the utilized power station are improved after retrofitting the burners.
Resumo:
A visual observation of liquid-gas two-phase flow in anode channels of a direct methanol proton exchange membrane fuel cells in microgravity has been carried out in a drop tower. The anode flow bed consisted of 2 manifolds and 11 parallel straight channels. The length, width and depth of single channel with rectangular cross section was 48.0 mm, 2.5 mm and 2.0 mm, respectively. The experimental results indicated that the size of bubbles in microgravity condition is bigger than that in normal gravity. The longer the time, the bigger the bubbles. The velocity of bubbles rising is slower than that in normal gravity because buoyancy lift is very weak in microgravity. The flow pattern in anode channels could change from bubbly flow in normal gravity to slug flow in microgravity. The gas slugs blocked supply of reactants from channels to anode catalyst layer through gas diffusion layer. When the weakened mass transfer causes concentration polarization, the output performance of fuel cells declines.