992 resultados para Variability Models
Resumo:
Observations and climate models suggest significant decadal variability within the North Atlantic subpolar gyre (NA SPG), though observations are sparse and models disagree on the details of this variability. Therefore, it is important to understand 1) the mechanisms of simulated decadal variability, 2) which parts of simulated variability are more faithful representations of reality, and 3) the implications for climate predictions. Here, we investigate the decadal variability in the NA SPG in the state-of-the-art, high resolution (0.25◦ ocean resolution), climate model ‘HadGEM3’. We find a decadal mode with a period of 17 years that explains 30% of the annual variance in related indices. The mode arises due to the advection of heat content anomalies, and shows asymmetries in the timescale of phase reversal between positive and negative phases. A negative feedback from temperature-driven density anomalies in the Labrador Sea (LS) allows for the phase reversal. The North Atlantic Oscillation (NAO), which exhibits the same periodicity, amplifies the mode. The atmosphere-ocean coupling is stronger during positive rather than negative NAO states, explaining the asymmetry. Within the NA SPG, there is potential predictability arising partly from this mode for up to 5 years. There are important similarities between observed and simulated variability, such as the apparent role for the propagation of heat content anomalies. However, observations suggest interannual LS density anomalies are salinity-driven. Salinity control of density would change the temperature feedback to the south, possibly limiting real-world predictive skill in the southern NA SPG with this model. Finally, to understand the diversity of behaviours, we analyse 42 present-generation climate models. Temperature and salinity biases are found to systematically influence the driver of density variability in the LS. Resolution is a good predictor of the biases. The dependence of variability on the background state has important implications for decadal predictions.
Resumo:
OBJECTIVES: To develop a method for objective assessment of fine motor timing variability in Parkinson’s disease (PD) patients, using digital spiral data gathered by a touch screen device. BACKGROUND: A retrospective analysis was conducted on data from 105 subjects including65 patients with advanced PD (group A), 15 intermediate patients experiencing motor fluctuations (group I), 15 early stage patients (group S), and 10 healthy elderly subjects (HE) were examined. The subjects were asked to perform repeated upper limb motor tasks by tracing a pre-drawn Archimedes spiral as shown on the screen of the device. The spiral tracing test was performed using an ergonomic pen stylus, using dominant hand. The test was repeated three times per test occasion and the subjects were instructed to complete it within 10 seconds. Digital spiral data including stylus position (x-ycoordinates) and timestamps (milliseconds) were collected and used in subsequent analysis. The total number of observations with the test battery were as follows: Swedish group (n=10079), Italian I group (n=822), Italian S group (n = 811), and HE (n=299). METHODS: The raw spiral data were processed with three data processing methods. To quantify motor timing variability during spiral drawing tasks Approximate Entropy (APEN) method was applied on digitized spiral data. APEN is designed to capture the amount of irregularity or complexity in time series. APEN requires determination of two parameters, namely, the window size and similarity measure. In our work and after experimentation, window size was set to 4 and similarity measure to 0.2 (20% of the standard deviation of the time series). The final score obtained by APEN was normalized by total drawing completion time and used in subsequent analysis. The score generated by this method is hence on denoted APEN. In addition, two more methods were applied on digital spiral data and their scores were used in subsequent analysis. The first method was based on Digital Wavelet Transform and Principal Component Analysis and generated a score representing spiral drawing impairment. The score generated by this method is hence on denoted WAV. The second method was based on standard deviation of frequency filtered drawing velocity. The score generated by this method is hence on denoted SDDV. Linear mixed-effects (LME) models were used to evaluate mean differences of the spiral scores of the three methods across the four subject groups. Test-retest reliability of the three scores was assessed after taking mean of the three possible correlations (Spearman’s rank coefficients) between the three test trials. Internal consistency of the methods was assessed by calculating correlations between their scores. RESULTS: When comparing mean spiral scores between the four subject groups, the APEN scores were different between HE subjects and three patient groups (P=0.626 for S group with 9.9% mean value difference, P=0.089 for I group with 30.2%, and P=0.0019 for A group with 44.1%). However, there were no significant differences in mean scores of the other two methods, except for the WAV between the HE and A groups (P<0.001). WAV and SDDV were highly and significantly correlated to each other with a coefficient of 0.69. However, APEN was not correlated to neither WAV nor SDDV with coefficients of 0.11 and 0.12, respectively. Test-retest reliability coefficients of the three scores were as follows: APEN (0.9), WAV(0.83) and SD-DV (0.55). CONCLUSIONS: The results show that the digital spiral analysis-based objective APEN measure is able to significantly differentiate the healthy subjects from patients at advanced level. In contrast to the other two methods (WAV and SDDV) that are designed to quantify dyskinesias (over-medications), this method can be useful for characterizing Off symptoms in PD. The APEN was not correlated to none of the other two methods indicating that it measures a different construct of upper limb motor function in PD patients than WAV and SDDV. The APEN also had a better test-retest reliability indicating that it is more stable and consistent over time than WAV and SDDV.
Resumo:
This thesis is composed of three articles with the subjects of macroeconomics and - nance. Each article corresponds to a chapter and is done in paper format. In the rst article, which was done with Axel Simonsen, we model and estimate a small open economy for the Canadian economy in a two country General Equilibrium (DSGE) framework. We show that it is important to account for the correlation between Domestic and Foreign shocks and for the Incomplete Pass-Through. In the second chapter-paper, which was done with Hedibert Freitas Lopes, we estimate a Regime-switching Macro-Finance model for the term-structure of interest rates to study the US post-World War II (WWII) joint behavior of macro-variables and the yield-curve. We show that our model tracks well the US NBER cycles, the addition of changes of regime are important to explain the Expectation Theory of the term structure, and macro-variables have increasing importance in recessions to explain the variability of the yield curve. We also present a novel sequential Monte-Carlo algorithm to learn about the parameters and the latent states of the Economy. In the third chapter, I present a Gaussian A ne Term Structure Model (ATSM) with latent jumps in order to address two questions: (1) what are the implications of incorporating jumps in an ATSM for Asian option pricing, in the particular case of the Brazilian DI Index (IDI) option, and (2) how jumps and options a ect the bond risk-premia dynamics. I show that jump risk-premia is negative in a scenario of decreasing interest rates (my sample period) and is important to explain the level of yields, and that gaussian models without jumps and with constant intensity jumps are good to price Asian options.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The variation of soil textural characteristics is a function of the relief and parent materials. The objective of this work was to study soil texture spatial variability from different parent material in Pereira Barreto, SP. An area of 530.67 hectares was mapped through the use of Global Positioning System receivers and obtaining of Digital Elevation Models. A set of 201 soil samples was collected from every seven hectares, at three depths: 0 - 0.25 m; 0.25 - 0.50 m; and 0.80 - 1.00 m. The amounts of sand, silt and clay were obtained by the pipette method and analyzed by both descriptive statistics and geostatistics. Soil textures varied as a function of parent materials and topography.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
O objetivo deste trabalho foi analizar a distribuição espacial da compactação do solo e a influência da umidade do solo na resistência à penetração. Esta última variável foi descrita pelo índice de cone. O solo estudado foi Nitossolo e os dados de índice de cone foram obtidos usando um penetrômetro. A resistência do solo foi avaliada a 5 profundidades diferentes, 0-10 cm, 10-20 cm, 20-30 cm, 30-40 cm e mais de 40 cm, porém o conteúdo de umidade do solo foi medido a 0-20 cm e 20-40 cm. As condições hídricas do solo variaram nas diferentes amostragems. Os coeficientes de variação para o índice de cone foram 16,5% a 45,8% e os do conteúdo de umidade do solo variaram entre 8,96% e 21,38%. Os resultados sugeriram elevada correlação entre a resistência do solo, estimada pelo índice de cone e a profundidade do solo. Sem embargo, a relação esperada com a umidade do solo não foi apreciada. Observou-se dependência espacial em 31 de 35 séries de dados de índice de cone e umidade do solo. Esta dependência foi ajustada por modelos exponenciais com efeito pepita variável de 0 a 90% o valor do patamar. em séries de dados o comportamento foi aleatório. Portanto, a técnica das distâncias inversas foi utilizada para cartografar a distribuição das variáveis que não tiveram estrutura espacial. Na krigagem constatou-se uma suavização dos mapas comparados com esses das distâncias inversas. A krigagem indicadora foi utilizada para cartografar a variabilidade espacial do índice de cone e recomendar melhor manejo do solo.
Resumo:
The spatial variability of mechanical resistance to penetration (PR) and gravimetric moisture (GM) was studied at a depth of 0-0.40 m, in a ferralsol cropped with corn, and under conventional tillage in llha Solteira, Brazil (latitude 20 degrees 17'S, and longitude 52 degrees 25'W). The purpose of this study was to analyse and to try explaining the spatial variability of the mentioned soil physical properties using geostatistics. Soil data was collected at points arranged on the nodes of a mesh with 97 points. Geostatistics was used to analyse the spatial variability of PR and GM at four depths: 0-0. 1, 0.1-0.2, 0.2-0.3 and 0.3-0.4 m. PR showed a higher variability of data, with coefficients of variation of 52.39, 30.54, 16.91, and 15.18%, from the surface layers to the deepest layers. The values of the coefficients of variation for GM were lower: 9.99, 5.13, 5.59, and 5.69%. Correlation between GM and PR for the same soil layers was low. Penetration resistance showed spatial structure only in the 0.30-0.40 m layer, while gravimetric moisture showed spatial structure at all depths except for 0-0. 10 m. All the models of fitted semivariograms were spherical and exponential, with ranges of 10-80 m. Data for the variable 'GM' in the 0.20-0.30 and 0.30-0.40 m layers revealed a trend in data attributed to the occurrence of subsurface water flow. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The objective of this work was to model and diagnose the spatial variability of soil load support capacity (SLSC) in sugar cane crop fields, as well as to evaluate the management impact on São Paulo State soil structure. The investigated variables were: pressure preconsolidation (sigma(p)), apparent cohesion () and internal friction angle (). The conclusions from the results were that the models and spatial dependence maps constitute important tools in the prediction and location of the mechanical internal strength of soils cultivated with sugar cane. They will help future soil management decisions so that soil structure sustainability will not be compromised.
Resumo:
In this work, the spatial variability model of CO2 emissions and soil properties of a Brazilian bare soil were investigated. Carbon dioxide emissions were measured on three different days at contrasted soil temperature and soil moisture conditions, and soil properties were investigated at the same points where emissions were measured. One spatial variability model of soil CO2 emissions was found for each measurement day, and these models are similar to the ones of soil properties studied in an area of 100 x 100 m. (C) 2000 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Water infiltration into soil is one of the basic factors for estimating irrigation intensity according to the plants' requirements; this is aimed at avoiding problems of surface run-off and degradation. The purpose of the present investigation was to determine the spatial variation of infiltration and its relationship to some physical properties of soil by means of geostatistical techniques in Typic Plinthaquult soils having average texture and flat relief. A 113 point mesh was designned, having a regular distance of 10 m between points, samples being taken from 0 to 0.20 meters depth. Sand, silt and clay content, bulk density, macroporosity, microporosity and total porosity were determined. Infiltration tests were carried out in the field by means of a 15 cm diameter ring. Descriptive statistics and geostatistics were used for analysing the data. Infiltration, silt and microporosity data did not fit a normal distribution curve. Infiltration had high variability, having an average 36.03 mm h(-1). Total porosity was 56.73%, this being the only property that did not show spatial dependency. The smallest ranges were observed for bulk density, macroporosity and microporosity, having values of less than 40 m. The smallest degrees of spatial dependence were observed for infiltration, silt and clay, evidence also being shown of the influence of silt and clay on infiltration rate. Contour maps were constructed; fitting them to the semivariogram models, together with studying the correlations, led to establishing relationships between the properties.
Resumo:
Additive and nonadditive genetic effects on preweaning weight gain (PWG) of a commercial crossbred population were estimated using different genetic models and estimation methods. The data set consisted of 103,445 records on purebred and crossbred Nelore-Hereford calves raised under pasture conditions on farms located in south, southeast, and middle west Brazilian regions. In addition to breed additive and dominance effects, the models including different epistasis covariables were tested. Models considering joint additive and environment (latitude) by genetic effects interactions were also applied. In a first step, analyses were carried out under animal models. In a second step, preadjusted records were analyzed using ordinary least squares (OLS) and ridge regression (RR). The results reinforced evidence that breed additive and dominance effects are not sufficient to explain the observed variability in preweaning traits of Bos taurus x Bos indicus calves, and that genotype x environment interaction plays an important role in the evaluation of crossbred calves. Data were ill-conditioned to estimate the effects of genotype x environment interactions. Models including these effects presented multicolinearity problems. In this case, RR seemed to be a powerful tool for obtaining more plausible and stable estimates. Estimated prediction error variances and variance inflation factors were drastically reduced, and many effects that were not significant under ordinary least squares became significant under RR. Predictions of PWG based on RR estimates were more acceptable from a biological perspective. In temperate and subtropical regions, calves with intermediate genetic compositions (close to 1/2 Nelore) exhibited greater predicted PWG. In the tropics, predicted PWG increased linearly as genotype got closer to Nelore. ©2006 American Society of Animal Science. All rights reserved.
Resumo:
Random regression models have been widely used to estimate genetic parameters that influence milk production in Bos taurus breeds, and more recently in B. indicus breeds. With the aim of finding appropriate random regression model to analyze milk yield, different parametric functions were compared, applied to 20,524 test-day milk yield records of 2816 first-lactation Guzerat (B. indicus) cows in Brazilian herds. The records were analyzed by random regression models whose random effects were additive genetic, permanent environmental and residual, and whose fixed effects were contemporary group, the covariable cow age at calving (linear and quadratic effects), and the herd lactation curve. The additive genetic and permanent environmental effects were modeled by the Wilmink function, a modified Wilmink function (with the second term divided by 100), a function that combined third-order Legendre polynomials with the last term of the Wilmink function, and the Ali and Schaeffer function. The residual variances were modeled by means of 1, 4, 6, or 10 heterogeneous classes, with the exception of the last term of the Wilmink function, for which there were 1, from 0.20 to 0.33. Genetic correlations between adjacent records were high values (0.83-0.99), but they declined when the interval between the test-day records increased, and were negative between the first and last records. The model employing the Ali and Schaeffer function with six residual variance classes was the most suitable for fitting the data. © FUNPEC-RP.