939 resultados para Vacuum-tubes
Resumo:
We use the optimized linear δ expansion and functional methods to study vacuum contributions in nuclear matter up to the lowest non-trivial order which includes exchange terms. We show that well known results (MFT, RHA and HF) can be easily reproduced when appropriate limits are taken. Neglecting vacuum contributions we explicitly show that the δ expansion goes beyond the traditional loop approximation previously used to study two loop vacuum contributions in nuclear matter. We then evaluate and renormalize vacuum exchange contributions showing that they are numerically very large, as predicted by the ordinary loop approximation.
Resumo:
We study the equation of state for neutron matter using the Walecka model including quantum corrections for baryons and sigma mesons through a realignment of the vacuum. We next use this equation of state to calculate the radius, mass, and other properties of rotating neutron stars.
Resumo:
Using the Cornwall-Jackiw-Tomboulis effective potential for composite operators we compute the QCD vacuum energy as a function of the dynamical quark and gluon propagators, which are related to their respective condensâtes as predicted by the operator product expansion. The identification of this result to the vacuum energy obtained from the trace of the energy-momentum tensor allows us to study the gluon self-energy, verifying that it is fairly represented in the ultraviolet by the asymptotic behavior predicted by the operator product expansion, and in the infrared it is frozen at its asymptotic value at one scale of the order of the dynamical gluon mass. We also discuss the implications of this identity for heavy and light quarks. For heavy quarks we recover, through the vacuum energy calculation, the relation nij{filif)-îi(asl'n)GlivGllv obtained many years ago with QCD sum rules. ©2000 The American Physical Society.
Resumo:
We derive the equation of state for hot nuclear matter using the Walecka model in a non-perturbative formalism. We include here the vacuum polarization effects arising from the nucleon and scalar mesons through a realignment of the vacuum. A ground state structure with baryon-antibaryon condensates yields the results obtained through the relativistic Hartree approximation of summing baryonic tadpole diagrams. Generalization of such a state to include the quantum effects for the scalar meson fields through the σ -meson condensates amounts to summing over a class of multiloop diagrams. The techniques of the thermofield dynamics method are used for the finite-temperature and finite-density calculations. The in-medium nucleon and sigma meson masses are also calculated in a self-consistent manner. We examine the liquid-gas phase transition at low temperatures (≈ 20 MeV), as well as apply the formalism to high temperatures to examine a possible chiral symmetry restoration phase transition.
Resumo:
This work presents an investigation into the use of the finite element method and artificial neural networks in the identification of defects in industrial plants metallic tubes, due to the aggressive actions of the fluids contained by them, and/or atmospheric agents. The methodology used in this study consists of simulating a very large number of defects in a metallic tube, using the finite element method. Both variations in width and height of the defects are considered. Then, the obtained results are used to generate a set of vectors for the training of a perceptron multilayer artificial neural network. Finally, the obtained neural network is used to classify a group of new defects, simulated by the finite element method, but that do not belong to the original dataset. The reached results demonstrate the efficiency of the proposed approach, and encourage future works on this subject.
Resumo:
The purpose of this paper was to study the reaction of rat subcutaneous connective tissue to the implantation of dentin tubes filled with white mineral trioxide aggregate (MTA), a material that will be marketed. The tubes were implanted into rat subcutaneous tissue and the animals were sacrificed after 7 and 30 days. The undecalcified pieces were prepared for histological analysis with polarized light and von Kossa technique for mineralized tissues. Granulations birefringent to polarized light and an irregular structure like a bridge were observed next to the material; both were von Kossa positive. Also, in the dentin wall tubules a layer of birefringent granulations was observed. The results were similar to those reported for gray MTA, indicating that the mechanisms of action of the white and gray MTA are similar.
Resumo:
This study examined by means of scanning electron microscopy (SEM), the attachment of Streptococcus mutans and the corrosion of cast commercially pure titanium, used in dental dentures. The sample discs were cast in commercially pure titanium using the vacuum-pressure machine (Rematitan System). The surfaces of each metal were ground and polished with sandpaper (#300-4000) and alumina paste (0.3 μm). The roughness of the surface (Ra) was measured using the Surfcorder rugosimeter SE 1700. Four coupons were inserted separately into Falcon tubes contained Mueller Hinton broth inoculated with S. mutans ATCC 25175 (109 cuf) and incubated at 37 °C. The culture medium was changed every three days during a 365-day period, after which the falcons were prepared for observations by SEM. The mean Ra value of CP Ti was 0.1527 μm. After S. mutans biofilm removal, pits of corrosion were observed. Despite the low roughness, S. mutans attachment and biofilm formation was observed, which induced a surface corrosion of the cast pure titanium.
Resumo:
Objective: Although direct bonding takes up less clinical time and ensures increased preservation of gingival health, the banding of molar teeth is still widespread nowadays. It would therefore be convenient to devise methods capable of increasing the efficiency of this procedure, notably for teeth subjected to substantial masticatory impact, such as molars. This study was conducted with the purpose of evaluating whether direct bonding would benefit from the application of an additional layer of resin to the occlusal surfaces of the tube/tooth interface. Methods: A sample of 40 mandibular third molars was selected and randomly divided into two groups: Group 1 - Conventional direct bonding, followed by the application of a layer of resin to the occlusal surfaces of the tube/tooth interface, and Group 2 - Conventional direct bonding. Shear bond strength was tested 24 hours after bonding with the aid of a universal testing machine operating at a speed of 0.5mm/min. The results were analyzed using the independent t-test. Results: The shear bond strength tests yielded the following mean values: 17.08 MPa for Group 1 and 12.60 MPa for Group 2. Group 1 showed higher statistically significant shear bond strength than Group 2. Conclusions: The application of an additional layer of resin to the occlusal surfaces of the tube/tooth interface was found to enhance bond strength quality of orthodontic buccal tubes bonded directly to molar teeth.
Resumo:
Recently, classical elasticity theory for thin sheets was used to demonstrate the existence of a universal structural behavior describing the confinement of sheets inside cylindrical tubes. However, this kind of formalism was derived to describe macroscopic systems. A natural question is whether this behavior still holds at nanoscale. In this work, we have investigated through molecular dynamics simulations the structural behavior of graphene and boron nitride single layers confined into nanotubes. Our results show that the class of universality observed at macroscale is no longer observed at nanoscale. The origin of this discrepancy is addressed in terms of the relative importance of forces and energies at macro and nano scales. © 2012 Materials Research Society.
Resumo:
It has been shown that well-behaved spacetimes may induce the vacuum fluctuations of some nonminimally coupled free scalar fields to go through a phase of exponential growth. Here, we discuss this mechanism in the context of spheroidal thin shells emphasizing the consequences of deviations from spherical symmetry. © 2013 American Physical Society.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Engenharia Mecânica - FEB
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
ABSTRACT: The Generalized Integral Transform Technique (GITT) is applied to the solution of the momentum equations in a hydrodynamically developing laminar flow of a non-Newtonian power-law fluid inside a circular duct. A primitive variables formulation is adopted in order to avoid the singularity of the auxiliary eigenvalue problem in terms of Bessel functions at the centerline of the duct when the GITT approach is applied. Results for the velocity field and friction factor-Reynolds number product are computed for different power-law indices, which are tabulated and graphically presented as functions of the dimensionless coordinates. Critical comparisons with previous results in the literature are also performed, in order to validate the numerical codes developed in the present work and to demonstrate the consistency of the final results.
Resumo:
ABSTRACT: The thermal entry region in laminar forced convection of Herschel-Bulkley fluids is solved analytically through the integral transform technique, for both circular and parallel-plates ducts, which are maintained at a prescribed wall temperature or at a prescribed wall heat flux. The local Nusselt numbers are obtained with high accuracy in both developing and fully-developed thermal regions, and critical comparisons with previously reported numerical results are performed.