954 resultados para VIBRATIONAL FREQUENCIES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The industrial application of kaolinite is closely related to its reactivity and surface properties. The reactivity of kaolinite can be tested by intercalation, i.e. via the insertion of low molecular weight organic compounds between the kaolinite layers resulting in the formation of a nano-layered organo-complex. Although intercalation of kaolinite is an old and ongoing research topic, there is a limited knowledge available on the reactivity of different kaolinites, the mechanism of complex formation as well as on the structure of the complexes formed. Grafting and incorporation of exfoliated kaolinite in polymer matrices and other potential applications can open new horizons in the study of kaolinite intercalation. This paper attempts to summarize (without completion) the most recent achievements in the study of kaolinite organo-complexes obtained with the most common intercalating compounds like urea, potassium acetate, dimethyl sulphoxide, formamide and hydrazine using vibrational spectroscopy combined with X-ray powder diffraction and thermal analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This review focuses on the vibrational spectroscopy of the compounds and minerals containing the arsenite, antimonite and antimonate anions. The review collects and correlates the published data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Raman and infrared spectrum of the antimonate mineral stibiconite Sb3+Sb5+2O6(OH) were used to define aspects of the molecular structure of the mineral. Bands attributable to water, OH stretching and bending and SbO stretching and bending were assigned. The mineral has been shown to contain both calcium and water and the formula is probably best written (Sb3+,Ca)ySb5+2-x(O,OH,H2O)6-7 where y approaches 1 and x varies from 0 to 1. Infrared spectroscopy complimented with thermogravimetric analysis proves the presence of water in the stibiconite structure. The mineral stibiconite is formed through replacement of the sulphur in stibnite. No Raman or infrared bands attributable to stibnite were identified in the spectra.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fourier transfonn (FT) Raman, Raman microspectroscopy and Fourier transform infrared (FTIR) spectroscopy have been used for the structural analysis and characterisation of untreated and chemically treated wool fibres. For FT -Raman spectroscopy novel methods of sample presentation have been developed and optimised for the analysis of wool. No significant fluorescence was observed and the spectra could be obtained routinely. The stability of wool keratin to the laser source was investigated and the visual and spectroscopic signs of sample damage were established. Wool keratin was found to be extremely robust with no signs of sample degradation observed for laser powers of up to 600 m W and for exposure times of up to seven and half hours. Due to improvements in band resolution and signal-to-noise ratio, several previously unobserved spectral features have become apparent. The assignment of the Raman active vibrational modes of wool have been reviewed and updated to include these features. The infrared spectroscopic techniques of attenuated total reflectance (ATR) and photoacoustic (P A) have been used to examine shrinkproofed and mothproofed wool samples. Shrinkproofing is an oxidative chemical treatment used to selectively modifY the surface of a wool fibre. Mothproofing is a chemical treatment applied to wool for the prevention of insect attack. The ability of PAS and A TR to vary the penetration depth by varying certain instrumental parameters was used to obtain spectra of the near surface regions of these chemically treated samples. These spectra were compared with those taken with a greater penetration depth, which therefore represent more of the bulk wool sample. The PA and ATR spectra demonstrated that oxidation was restricted to the near-surface layer of wool. Extensive curve fitting of ATR spectra of untreated wool indicated that cuticle was composed of a mixed protein conformation, but was predominately that of an a.-helix. The cortex was proposed to be a mixture of both a.helical and ~-pleated sheet protein conformations. These findings were supported by PAS depth profiling results. Raman microspectroscopy was used in an extensive investigation of the molecular structure of the wool fibre. This included determining the orientation of certain functional groups within the wool fibre and the symmetry of particular vibrations. The orientation ofbonds within the wool fibre was investigated by orientating the wool fibre axis parallel and then perpendicular to the plane of polarisation of the electric vector of the incident radiation. It was experimentally determined that the majority of C=O and N-H bonds of the peptide bond of wool lie parallel to the fibre axis. Additionally, a number of the important vibrations associated with the a-helix were also found to lie parallel to the fibre axis. Further investigation into the molecular structure of wool involved determining what effect stretching the wool fibre had on bond orientation. Raman spectra of stretched and unstretched wool fibres indicated that extension altered the orientation ofthe aromatic rings, the CH2 and CH3 groups of the amino acids. Curve fitting results revealed that extension resulted in significant destruction of the a-helix structure a substantial increase in the P-pleated sheet structure. Finally, depolarisation ratios were calculated for Raman spectra. The vibrations associated with the aromatic rings of amino acids had very low ratios which indicated that the vibrations were highly symmetrical.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper a new approach is proposed for interpreting of regional frequencies in multi machine power systems. The method uses generator aggregation and system reduction based on coherent generators in each area. The reduced system structure is able to be identified and a kalman estimator is designed for the reduced system to estimate the inter-area modes using the synchronized phasor measurement data. The proposed method is tested on a six machine, three area test system and the obtained results show the estimation of inter-area oscillations in the system with a high accuracy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Near infrared (NIR), infrared (IR) spectroscopy and X-ray diffraction (XRD) have been applied to halotrichites of the formula FeAl2(SO4)4∙22H2O and Fe2+Fe23+(SO4)4∙22H2O. Comparison of the halotrichites and their starting materials has been used to give a better understanding of the bonding involved in these types of minerals. The vibrational spectroscopy data has shown that Fe2+ oxidises during the formation of halotrichite, no preventative measures were implemented to prevent oxidation, and this has been clearly shown by the position and broadness of electronic bands of transition metals in the NIR spectra (12500 to 7500 cm-1). It is apparent from this region that Fe3+ substitutes for Al3+ in the synthesis of halotrichite. Due to the oxidation of Fe2+ to Fe3+ the halotrichite sample contains a small portion of bilinite. This has been confirmed by XRD, peaks at 9 and 14° 2θ were observed in the halotrichite sample and are identical to the XRD pattern obtained for bilinite. Substitution of aluminium for Fe3+ has resulted in significant changes in the overall infrared and NIR spectral profiles. However, the lower wavenumber regions of the NIR spectra have very similar spectral profiles, which indicate a similar structure to halotrichite has formed for bilinite. This work has shown that iron halotrichites can be synthesised and characterised by infrared and NIR spectroscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Raman spectroscopy complimented with infrared spectroscopy has been used to characterise the antimonate mineral bindheimite Pb2Sb2O6(O,OH). The mineral is characterised by an intense Raman band at 656 cm-1 assigned to SbO stretching vibrations. Other lower intensity bands at 664, 749 and 814 cm-1 are also assigned to stretching vibrations. This observation suggests the non-equivalence of SbO units in the structure. Low intensity Raman bands at 293, 312 and 328 cm-1 are assigned to the OSbO bending vibrations. Infrared bands at 979, 1008, 1037 and 1058 cm-1 may be assigned to δ OH deformation modes of SbOH units. Infrared bands at 1603 and 1640 cm-1 are assigned to water bending vibrations, suggesting that water is involved in the bindheimite structure. Broad infrared bands centred upon 3250 cm-1 supports this concept. Thus the true formula of bindheimite is questioned and probably should be written as Pb2Sb2O6(O,OH,H2O)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The seawater neutralisation process is currently used in the Alumina industry to reduce the pH and dissolved metal concentrations in bauxite refinery residues, through the precipitation of Mg, Al, and Ca hydroxide and carbonate minerals. This neutralisation method is very similar to the co-precipitation method used to synthesise hydrotalcite (Mg6Al2(OH)16CO3•4H2O). This study looks at the effect of temperature on the type of precipitates that form from the seawater neutralisation process of Bayer liquor. The Bayer precipitates have been characterised by a variety of techniques, including X-ray diffraction, Raman spectroscopy and infrared spectroscopy. The mineralogical composition of Bayer precipitates largely includes hydrotalcite, hydromagnesite, and calcium carbonate species. XRD determined that Bayer hydrotalcites that are synthesised at 55 °C have a larger interlayer distance, indicating more anions are removed from Bayer liquor. Vibrational spectroscopic techniques have identified an increase in hydrogen bond strength for precipitates formed at 55 °C, suggesting the formation of a more stable Bayer hydrotalcite. Raman spectroscopy identified the intercalation of sulfate and carbonate anions into Bayer hydrotalcites using these synthesis conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Raman and infrared spectra of two polymorphous minerals with the chemical formula Fe3+(SO4)(OH)•2H2O, monoclinic butlerite and orthorhombic parabutlerite, are studied and the spectra assigned. Observed bands are attributed to the (SO4)2- stretching and bending vibrations, hydrogen bonded water molecules, stretching and bending vibrations of hydroxyl ions, water librational modes, Fe-O and Fe-OH stretching vibrations, Fe-OH bending vibrations and lattice vibrations. The O-H...O hydrogen bond lengths in the structures of both minerals are calculated from the wavenumbers of the stretching vibrations. One symmetrically distinct (SO4)2- unit in the structure of butlerite and two symmetrically distinct (SO4)2- units in the structure of parabutlerite are inferred from the Raman and infrared spectra. This conclusion agrees with the published crystal structures of both mineral phases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mineral tsumebite Pb2Cu(PO4)(SO4)(OH), a copper phosphate-sulfate hydroxide of the brackebuschite group has been characterised by Raman and infrared spectroscopy. The brackebuschite mineral group are a series of monoclinic arsenates, phosphates and vanadates of the general formula A2B(XO4)(OH,H2O), where A may be Ba, Ca, Pb, Sr, while B may be Al, Cu2+,Fe2+, Fe3+, Mn2+, Mn3+, Zn and XO4 may be AsO4, PO4, SO4,VO4. Bands are assigned to the stretching and bending modes of PO43- and HOPO3 units. Hydrogen bond distances are calculated based upon the position of the OH stretching vibrations and range from 2.759 Å to 3.205 Å. This range of hydrogen bonding contributes to the stability of the mineral.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mineral sanjuanite Al2(PO4)(SO4)(OH)•9H2O has been characterised by Raman spectroscopy complimented by infrared spectroscopy. The mineral is characterised by an intense Raman band at 984 cm-1, assigned to the (PO4)3- ν1 symmetric stretching mode. A shoulder band at 1037 cm-1 is attributed to the (SO4)2- ν1 symmetric stretching mode. Two Raman bands observed at 1102 and 1148 cm-1 are assigned to (PO4)3- and (SO4)2- ν3 antisymmetric stretching modes. Multiple bands provide evidence for the reduction in symmetry of both anions. This concept is supported by the multiple sulphate and phosphate bending modes. Raman spectroscopy shows that there are more than one non-equivalent water molecules in the sanjuanite structure. There is evidence that structural disorder exists, shown by the complex set of overlapping bands in the Raman and infrared spectra. At least two types of water are identified with different hydrogen bond strengths. The involvement of water in the sanjuanite structure is essential for the mineral stability.