985 resultados para VASCULAR ENDOTHELIUM
Resumo:
BACKGROUND AND OBJECTIVE: Photodynamic therapy (PDT) affects vascular barrier function and thus increases vessel permeability. This phenomenon may be exploited to facilitate targeted drug delivery and may lead to a new clinical application of photodynamic therapy. Here, we investigate the role of leukocyte recruitment for PDT-induced vascular permeabilization. STUDY DESIGN/MATERIAL AND METHODS: Fluorescein isothiocyanate dextran (FITC-D, 2,000 kDa) was injected intravenously 120 minutes after focal PDT on striated muscle in nude mice bearing dorsal skinfold chambers (Visudyne® 800 µg/kg, fluence rate 300 mW/cm2 , light dose of 200 J/cm2). Leukocyte interaction with endothelial cells was inhibited by antibodies functionally blocking adhesion molecules ("MABS-PDT" group, n = 5); control animals had PDT but no antibody injection (group "PDT", n = 7). By intravital microscopy, we monitored leukocyte rolling and sticking in real-time before, 90 and 180 minutes after PDT. The extravasation of FITC-D from striated muscle vessels into the interstitial space was determined in vivo during 45 minutes to assess treatment-induced alterations of vascular permeability. RESULTS: PDT significantly increased the recruitment of leukocytes and enhanced the leakage of FITC-D. Neutralization of adhesion molecules before PDT suppressed the rolling of leukocytes along the venular endothelium and significantly reduced the extravasation of FITC-D as compared to control animals (156 ± 27 vs. 11 ± 2 (mean ± SEM, number of WBC/30 seconds mm vessel circumference; P < 0.05) at 90 minutes after PDT and 194 ± 21 vs. 14 ± 4 at 180 minutes after PDT). In contrast, leukocyte sticking was not downregulated by the antibody treatment. CONCLUSION: Leukocyte recruitment plays an essential role in the permeability-enhancing effect of PDT.
Resumo:
BACKGROUND: Assisted reproductive technology (ART) involves the manipulation of early embryos at a time when they may be particularly vulnerable to external disturbances. Environmental influences during the embryonic and fetal development influence the individual's susceptibility to cardiovascular disease, raising concerns about the potential consequences of ART on the long-term health of the offspring. METHODS AND RESULTS: We assessed systemic (flow-mediated dilation of the brachial artery, pulse-wave velocity, and carotid intima-media thickness) and pulmonary (pulmonary artery pressure at high altitude by Doppler echocardiography) vascular function in 65 healthy children born after ART and 57 control children. Flow-mediated dilation of the brachial artery was 25% smaller in ART than in control children (6.7±1.6% versus 8.6±1.7%; P<0.0001), whereas endothelium-independent vasodilation was similar in the 2 groups. Carotid-femoral pulse-wave velocity was significantly (P<0.001) faster and carotid intima-media thickness was significantly (P<0.0001) greater in children conceived by ART than in control children. The systolic pulmonary artery pressure at high altitude (3450 m) was 30% higher (P<0.001) in ART than in control children. Vascular function was normal in children conceived naturally during hormonal stimulation of ovulation and in siblings of ART children who were conceived naturally. CONCLUSIONS: Healthy children conceived by ART display generalized vascular dysfunction. This problem does not appear to be related to parental factors but to the ART procedure itself. CLINICAL TRIAL REGISTRATION: URL: www.clinicaltrials.gov. Unique identifier: NCT00837642.
Resumo:
Leukocyte-derived microparticles (LMPs) may originate from neutrophils, monocytes/macrophages, and lymphocytes. They express markers from their parental cells and harbor membrane and cytoplasmic proteins as well as bioactive lipids implicated in a variety of mechanisms, maintaining or disrupting vascular homeostasis. When they carry tissue factor or coagulation inhibitors, they participate in hemostasis and pathological thrombosis. Both proinflammatory and anti-inflammatory processes can be affected by LMPs, thus ensuring an appropriate inflammatory response. LMPs also play a dual role in the endothelium by either improving the endothelial function or inducing an endothelial dysfunction. LMPs are implicated in all stages of atherosclerosis. They circulate at a high level in the bloodstream of patients with high atherothrombotic risk, such as smokers, diabetics, and subjects with obstructive sleep apnea, where their prolonged contact with the vessel wall may contribute to its overall deterioration. Numbering microparticles, including LMPs, might be useful in predicting cardiovascular events. LMPs modify the endothelial function and promote the recruitment of inflammatory cells in the vascular wall, necessary processes for the progression of the atherosclerotic lesion. In addition, LMPs favor the neovascularization within the vulnerable plaque and, in the ruptured plaque, they take part in coagulation and platelet activation. Finally, LMPs participate in angiogenesis. They might represent a novel therapeutic tool to reset the angiogenic switch in pathologies with altered angiogenesis. Additional studies are needed to further investigate the role of LMPs in cardiovascular diseases. However, large-scale studies are currently difficult to set up because microparticle measurement still requires elaborate techniques which lack standardization.
Resumo:
BACKGROUND: Adverse events in utero may predispose to cardiovascular disease in adulthood. The underlying mechanisms are unknown. During preeclampsia, vasculotoxic factors are released into the maternal circulation by the diseased placenta. We speculated that these factors pass the placental barrier and leave a defect in the circulation of the offspring that predisposes to a pathological response later in life. The hypoxia associated with high-altitude exposure is expected to facilitate the detection of this problem. METHODS AND RESULTS: We assessed pulmonary artery pressure (by Doppler echocardiography) and flow-mediated dilation of the brachial artery in 48 offspring of women with preeclampsia and 90 offspring of women with normal pregnancies born and permanently living at the same high-altitude location (3600 m). Pulmonary artery pressure was roughly 30% higher (mean+/-SD, 32.1+/-5.6 versus 25.3+/-4.7 mm Hg; P<0.001) and flow-mediated dilation was 30% smaller (6.3+/-1.2% versus 8.3+/-1.4%; P<0.0001) in offspring of mothers with preeclampsia than in control subjects. A strong inverse relationship existed between flow-mediated dilation and pulmonary artery pressure (r=-0.61, P<0.001). The vascular dysfunction was related to preeclampsia itself because siblings of offspring of mothers with preeclampsia who were born after a normal pregnancy had normal vascular function. Augmented oxidative stress may represent an underlying mechanism because thiobarbituric acid-reactive substances plasma concentration was increased in offspring of mothers with preeclampsia. CONCLUSIONS: Preeclampsia leaves a persistent defect in the systemic and the pulmonary circulation of the offspring. This defect predisposes to exaggerated hypoxic pulmonary hypertension already during childhood and may contribute to premature cardiovascular disease in the systemic circulation later in life.
Resumo:
Cardiovascular complications represent by far the most severe manifestations of diabetes mellitus. Treatment aimed at stopping progression of vascular lesions may fall short if initiated when the disease becomes clinically evident. Therefore, identification of the earliest vascular disfunctions may offer the best opportunity to interfere with pathogenic mechanisms and avoid progression of diabetic vasculopathy. In this report, we present a few mechanisms that alter hemodynamic and metabolic homeostasis in the course of diabetes mellitus. Endothelial function with special emphasis on nitric oxide and oxidative stress, advanced glycation end products, and the renin angiotensin system are briefly discussed. New pharmacological agents that may favorably influence these parameters are presently undergoing clinical trials. However, tight control of plasma glucose and cardiovascular risk factors represent the cornerstone of the treatment in diabetes to slow progression of vascular disease.
Resumo:
The Staphylococcus aureus fibronectin (Fn) -binding protein A (FnBPA) is involved in bacterium-endothelium interactions which is one of the crucial events leading to infective endocarditis (IE). We previously showed that the sole expression of S. aureus FnBPA was sufficient to confer to non-invasive Lactococcus lactis bacteria the capacity to invade human endothelial cells (ECs) and to launch the typical endothelial proinflammatory and procoagulant responses that characterize IE. In the present study we further questioned whether these bacterium-EC interactions could be reproduced by single or combined FnBPA sub-domains (A, B, C or D) using a large library of truncated FnBPA constructs expressed in L. lactis. Significant invasion of cultured ECs was found for L. lactis expressing the FnBPA subdomains CD (aa 604-877) or A4(+16) (aa 432-559). Moreover, this correlates with the capacity of these fragments to elicit in vitro a marked increase in EC surface expression of both ICAM-1 and VCAM-1 and secretion of the CXCL8 chemokine and finally to induce a tissue factor-dependent endothelial coagulation response. We thus conclude that (sub)domains of the staphylococcal FnBPA molecule that express Fn-binding modules, alone or in combination, are sufficient to evoke an endothelial proinflammatory as well as a procoagulant response and thus account for IE severity.
Resumo:
Perinatal adverse events such as limitation of nutrients or oxygen supply are associated with the occurrence of diseases in adulthood, like cardiovascular diseases and diabetes. We investigated the long-term effects of perinatal hypoxia on the lung circulation, with particular attention to the nitric oxide (NO)/cGMP pathway. Mice were placed under hypoxia in utero 5 days before delivery and for 5 days after birth. Pups were then bred in normoxia until adulthood. Adults born in hypoxia displayed an altered regulation of pulmonary vascular tone with higher right ventricular pressure in normoxia and increased sensitivity to acute hypoxia compared with controls. Perinatal hypoxia dramatically decreased endothelium-dependent relaxation induced by ACh in adult pulmonary arteries (PAs) but did not influence NO-mediated endothelium-independent relaxation. The M(3) muscarinic receptor was implicated in the relaxing action of ACh and M(1) muscarinic receptor (M(1)AChR) in its vasoconstrictive effects. Pirenzepine or telenzepine, two preferential inhibitors of M(1)AChR, abolished the adverse effects of perinatal hypoxia on ACh-induced relaxation. M(1)AChR mRNA expression was increased in lungs and PAs of mice born in hypoxia. The phosphodiesterase 1 (PDE1) inhibitor vinpocetine also reversed the decrease in ACh-induced relaxation following perinatal hypoxia, suggesting that M(1)AChR-mediated alteration of ACh-induced relaxation is due to the activation of calcium-dependent PDE1. Therefore, perinatal hypoxia leads to an altered pulmonary circulation in adulthood with vascular dysfunction characterized by impaired endothelium-dependent relaxation and M(1)AChR plays a predominant role. This raises the possibility that muscarinic receptors could be key determinants in pulmonary vascular diseases in relation to "perinatal imprinting."
Resumo:
Objectives: Epidemiological studies suggest that adverse events in utero may predispose to premature cardiovascular disease in adulthood, but the mechanisms are not known. Recently, we found that young apparently healthy offspring of mothers with preeclampsia (PE) display systemic endothelial dysfunction. This problem could be related to PE per se or to a genetic abnormality that predisposes the mother to PE and the offspring to vascular dysfunction. To distinguish between these two possibilities, we assessed vascular function in offspring of PE, their siblings who were born after a normal pregnancy, and in control subjects.Methods: We measured endothelium-dependent vasodilation (flow-mediated vasodilation, FMD), in 10 pairs of healthy normotensive siblings, one born after PE (age 15±6 y; mean±SD), the other after normal pregnancy (17±6y) and in 17 (16±7y) controls. All subjects were born at term.Results: The vascular function in siblings of PE who were born after normal pregnancy was normal and comparable to the one in controls (8.6±1.5% vs. 8.1±1.3%, P=0.32), whereas offspring of PE displayed a roughly 30% smaller FMD than the two other groups (5.9±1.6%, P<0.005 vs. both siblings and controls, Figure). The endothelial dysfunction in the offspring of PE was not related to a difference in the central arterial blood pressure or arterial oxygen saturation, because they were comparable in the 3 groups. Figure 1. FMD in the three groups.Conclusions: These findings provide the first evidence that vascular dysfunction in offspring of PE is caused by PE itself, rather than by a genetic abnormality that predisposes the mother to PE and the offspring to a vascular defect. Prevention of PE and/or its successful treatment is expected to prevent vascular dysfunction and premature cardiovascular morbidity and mortality in the offspring.
Resumo:
The notion that tumor angiogenesis may have therapeutic implications in the control of tumor growth was introduced by Dr. Judah Folkman in 1971. The approval of Avastin in 2004 as the first antiangiogenic systemic drug to treat cancer patients came as a validation of this visionary concept and opened new perspectives to the treatment of cancer. In addition, this success boosted the field to the quest for new therapeutic targets and antiangiogenic drugs. Preclinical and clinical evidence indicate that vascular integrins may be valid therapeutic targets. In preclinical studies, pharmacological inhibition of integrin function efficiently suppressed angiogenesis and inhibited tumor progression. alphaVbeta3 and alphaVbeta5 were the first vascular integrins targeted to suppress tumor angiogenesis. Subsequent experiments revealed that at least four additional integrins (i.e., alpha1beta1, alpha2beta1, alpha5beta1, and alpha6beta4) might be potential therapeutic targets. In clinical studies low-molecular-weight integrin inhibitors and anti-integrin function-blocking antibodies demonstrated low toxicity and good tolerability and are now being tested in combination with radiotherapy and chemotherapy for anticancer activity in patients. In this article the authors review the role of integrins in angiogenesis, present recent development in the use of alphaVbeta3 and alpha5beta1 integrin antagonists as potential therapeutics in cancer, and discuss future perspectives.
Resumo:
Various pulmonary artery preparations in vitro demonstrate sustained endothelium-dependent contractions upon hypoxia. To determine whether endothelin-1 could mediate this phenomenon, we examined the effect of bosentan, a new antagonist of both the ETA and ETB subtypes of the endothelin receptor. Small (300 pm) pulmonary arteries from rats were mounted on a myograph, precontracted with prostaglandin F2 alpha and exposed to hypoxia (PO2, 10 to 15 mm Hg, measured on-line) for 45 min. Endothelium-intact control rings exhibited a biphasic response, with a transient initial vasoconstriction (phase 1) followed by a second slowly developing sustained contraction (phase 2). Expressed in percent of the maximal response to 80 mmol/L KCl, the amplitudes of phase 1 (peak tension) and 2 (tension after 45 min of hypoxia) averaged 37 +/- 12% and 17 +/- 14%, respectively (n = 11). In endothelium-denuded rings, phase 1 persisted while the amplitude of phase 2 was reduced to 2 +/- 12% (p < 0.05, n = 8), showing the endothelium dependence of this contraction. Neither phase was significantly decreased in rings treated with 10(-5) mmol/L bosentan (38 +/- 15% and 17 +/- 12%, respectively, n = 6). The PO2 threshold for onset of hypoxic contraction was not significantly different among these three groups and averaged 32 +/- 24 mm Hg. In a separate experiment, we assessed the inhibitory effect of 10(-5) mol/L bosentan on the response to 10(-8) mol/L endothelin-I. Rings treated for 45 min with 10(-8) mol/L endothelin-1 alone exhibited a maximal contraction of 75 +/- 27% (n = 6). This was reduced to 4 +/- 17% (p < 0.01, n = 6) in rings treated with both 10(-8) mol/L endothelin-1 and 10(-5) mol/L bosentan. We conclude that complete blockade of all endothelin receptor subtypes has no effect on either endothelium-dependent or -independent hypoxic contractions in this preparation. This suggests that endothelial factors other than endothelin-I mediate the acute hypoxic contractions of small pulmonary arteries in the rat.
Resumo:
Insults during the fetal period predispose the offspring to systemic cardiovascular disease, but little is known about the pulmonary circulation and the underlying mechanisms. Maternal undernutrition during pregnancy may represent a model to investigate underlying mechanisms, because it is associated with systemic vascular dysfunction in the offspring in animals and humans. In rats, restrictive diet during pregnancy (RDP) increases oxidative stress in the placenta. Oxygen species are known to induce epigenetic alterations and may cross the placental barrier. We hypothesized that RDP in mice induces pulmonary vascular dysfunction in the offspring that is related to an epigenetic mechanism. To test this hypothesis, we assessed pulmonary vascular function and lung DNA methylation in offspring of RDP and in control mice at the end of a 2-wk exposure to hypoxia. We found that endothelium-dependent pulmonary artery vasodilation in vitro was impaired and hypoxia-induced pulmonary hypertension and right ventricular hypertrophy in vivo were exaggerated in offspring of RDP. This pulmonary vascular dysfunction was associated with altered lung DNA methylation. Administration of the histone deacetylase inhibitors butyrate and trichostatin A to offspring of RDP normalized pulmonary DNA methylation and vascular function. Finally, administration of the nitroxide Tempol to the mother during RDP prevented vascular dysfunction and dysmethylation in the offspring. These findings demonstrate that in mice undernutrition during gestation induces pulmonary vascular dysfunction in the offspring by an epigenetic mechanism. A similar mechanism may be involved in the fetal programming of vascular dysfunction in humans.
Resumo:
BACKGROUND: Remodeling of quiescent vessels with increases in permeability, vasodilatation, and edema are hallmarks of inflammatory disorders. Factors involved in this type of remodeling represent potential therapeutic targets. OBJECTIVES: We investigated whether the nuclear hormone receptor peroxisome proliferator-activated receptor (PPAR) β/δ, a regulator of metabolism, fibrosis, and skin homeostasis, is involved in regulation of this type of remodeling. METHODS: Wild-type and various Pparb/d mutant mice were used to monitor dermal acute vascular hyperpermeability (AVH) and passive systemic anaphylaxis-induced hypothermia and edema. PPARβ/δ-dependent kinase activation and remodeling of endothelial cell-cell junctions were addressed by using human endothelial cells. RESULTS: AVH and dilatation of dermal microvessels stimulated by vascular endothelial growth factor A, histamine, and thrombin are severely compromised in PPARβ/δ-deficient mice. Selective deletion of the Pparb/d-encoding gene in endothelial cells in vivo similarly limits dermal AVH and vasodilatation, providing evidence that endothelial PPARβ/δ is the major player in regulating acute dermal microvessel remodeling. Furthermore, endothelial PPARβ/δ regulatory functions are not restricted to the skin vasculature because its deletion in the endothelium, but not in smooth muscle cells, also leads to reduced systemic anaphylaxis, the most severe form of allergic reaction, in which an acute vascular response plays a key role. PPARβ/δ-dependent AVH activation likely involves the activation of mitogen-activated protein kinase and Akt pathways and leads to downstream destabilization of endothelial cell-cell junctions. CONCLUSION: These results unveil not only a novel function of PPARβ/δ as a direct regulator of acute vessel permeability and dilatation but also provide evidence that antagonizing PPARβ/δ represents an important strategy to consider for moderating diseases with altered endothelial integrity, such as acute inflammatory and allergic disorders.
Resumo:
The golden standard in nuclear medicine imaging of inflammation is the use of radiolabeled leukocytes. Although their diagnostic accuracy is good, the preparation of the leukocytes is both laborious and potentially hazardous for laboratory personnel. Molecules involved in leukocyte migration could serve as targets for the development of inflammation imaging agents. An excellent target would be a molecule that is absent or expressed at low level in normal tissues, but is induced or up-regulated at the site of inflammation. Vascular adhesion protein-1 (VAP-1) is a very promising target for in vivo imaging, since it is translocated to the endothelial cell surface when inflammation occurs. VAP-1 functions as an endothelial adhesion molecule that participates in leukocyte recruitment to inflamed tissues. Besides being an adhesion molecule, VAP-1 also has enzymatic activity. In this thesis, the targeting of VAP-1 was studied by using Gallium-68 (68Ga) labeled peptides and an Iodine-124 (124I) labeled antibody. The peptides were designed based on molecular modelling and phage display library searches. The new imaging agents were preclinically tested in vitro, as well as in vivo in animal models. The most promising imaging agent appeared to be a peptide belonging to the VAP-1 leukocyte ligand, Siglec-9 peptide. The 68Ga-labeled Siglec-9 peptide was able to detect VAP-1 positive vasculature in rodent models of sterile skin inflammation and melanoma by positron emission tomography. In addition to peptides, the 124I-labeled antibody showed VAP-1 specific binding both in vitro and in vivo. However, the estimated human radiation dose was rather high, and thus further preclinical studies in disease models are needed to clarify the value of this imaging agent. Detection of VAP-1 on endothelium was demonstrated in these studies and this imaging approach could be used in the diagnosis of inflammatory conditions as well as melanoma. These studies provide a proof-of-concept for PET imaging of VAP-1 and further studies are warranted.
Resumo:
We investigated the angiotensin II (Ang II)-generating system by analyzing the vasoconstrictor effect of Ang II, angiotensin I (Ang I), and tetradecapeptide (TDP) renin substrate in the absence and presence of inhibitors of the renin-angiotensin system in isolated rat aortic rings and mesenteric arterial beds with and without functional endothelium. Ang II, Ang I, and TDP elicited a dose-dependent vasoconstrictor effect in both vascular preparations that was completely blocked by the Ang II receptor antagonist saralasin (50 nM). The angiotensin converting enzyme (ACE) inhibitor captopril (36 µM) completely inhibited the vasoconstrictor effect elicited by Ang I and TDP in aortic rings without affecting that of Ang II. In contrast, captopril (36 µM) significantly reduced (80-90%) the response to bolus injection of Ang I, without affecting those to Ang II and TDP in mesenteric arteries. Mechanical removal of the endothelium greatly potentiated (70-95%) the vasoconstrictor response to Ang II, Ang I, and TDP in aortic rings while these responses were unaffected by the removal of the endothelium of mesenteric arteries with sodium deoxycholate infusion. In addition, endothelium disruption did not change the pattern of response elicited by these peptides in the presence of captopril. These findings indicate that the endothelium may not be essential for Ang II formation in rat mesenteric arteries and aorta, but it may modulate the response to Ang II. Although Ang II formation from Ang I is essentially dependent on ACE in both vessels, our results suggest the existence of an alternative pathway in the mesenteric arterial bed that may play an important role in Ang II generation from TDP in resistance but not in large vessels during ACE inhibition
Resumo:
Isolated segments of the perfused rat tail artery display a high basal tone when compared to other isolated arteries such as the mesenteric and are suitable for the assay of vasopressor agents. However, the perfusion of this artery in the entire tail has not yet been used for functional studies. The main purpose of the present study was to identify some aspects of the vascular reactivity of the rat tail vascular bed and validate this method to measure vascular reactivity. The tail severed from the body was perfused with Krebs solution containing different Ca2+ concentrations at different flow rates. Rats were anesthetized with sodium pentobarbital (65 mg/kg) and heparinized (500 U). The tail artery was dissected near the tail insertion, cannulated and perfused with Krebs solution plus 30 µM EDTA at 36oC and 2.5 ml/min and the procedures were started after equilibration of the perfusion pressure. In the first group a dose-response curve to phenylephrine (PE) (0.5, 1, 2 and 5 µg, bolus injection) was obtained at different flow rates (1.5, 2.5 and 3.5 ml/min). The mean perfusion pressure increased with flow as well as PE vasopressor responses. In a second group the flow was changed (1.5, 2, 2.5, 3 and 3.5 ml/min) at different Ca2+ concentrations (0.62, 1.25, 2.5 and 3.75 mM) in the Krebs solution. Increasing Ca2+ concentrations did not alter the flow-pressure relationship. In the third group a similar protocol was performed but the rat tail vascular bed was perfused with Krebs solution containing PE (0.1 µg/ml). There was an enhancement of the effect of PE with increasing external Ca2+ and flow. PE vasopressor responses increased after endothelial damage with air and CHAPS, suggesting an endothelial modulation of the tone of the rat tail vascular bed. These experiments validate the perfusion of the rat tail vascular bed as a method to investigate vascular reactivity