955 resultados para Uranium dioxide.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Raman scattering experiments for nominally pure and uranium doped CaF2 single crystals were presented. In all crystals, the Raman active T_(2g) vibration mode of CaF2 was observed, whose frequency shift and full-width at half-maximum (FWHM) broadening correspond well with defects and impurities in CaF2 lattice. Additional Raman peaks develop in nominally pure CaF2 with high etch pits density and U^(6+):CaF2 crystals. Part of additional Raman peaks in the experimental results, which are assumed due to vibration modes from F- interstitials and vacancies, are in well agreement with the theoretical predications by employing the Green-function formulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

TiO2 coatings were prepared on fused silica with conventional electron beam evaporation deposition. After TiO2 thin films were annealed at different temperatures for 4 h, several properties were investigated by X-ray diffraction (XRD), spectrometer.. photoelectron spectroscopy (XPS) and AFM. It was found that with the annealing temperature increasing, the transmittance of TiO2 coatings decreased, and the cutoff wavelength shifted to long wavelength in near ultraviolet band. Especially, when coatings were annealed at high temperature, the optical loss is very serious, which can be attributed to the scattering and the absorption of TiO2 coatings. XRD patterns revealed that only anatase phase was observed in TiO2 coatings regardless of the different annealing temperatures. XPS results indicated that the fine chemical shift of TiO2 2p(1/2) should be attributed to existence of oxygen vacancies around Ti+4 ion. The investigation on surface morphology by AFM showed that the RMS of titania thin films gradually increases from less than 0.40 nm to 5.03 nm and it should be ascribed to the growth of titanium dioxide grain size with the increase of annealing temperature. (C) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

First-principles calculations for the temporal characteristics of hole-phonon relaxation in the valence band of titanium dioxide and zinc oxide have been performed. A first-principles method for the calculations of the quasistationary distribution function of holes has been developed. The results show that the quasistationary distribution of the holes in TiO2 extends to an energy level approximately 1eV below the top of the valence band. This conclusion in turn helps to elucidate the origin of the spectral dependence of the photocatalytic activity of TiO2. Analysis of the analogous data for ZnO shows that in this material spectral dependence of photocatalytic activity in the oxidative reactions is unlikely.