971 resultados para Unresolved vision problem
Resumo:
In the paper, the flow-shop scheduling problem with parallel machines at each stage (machine center) is studied. For each job its release and due date as well as a processing time for its each operation are given. The scheduling criterion consists of three parts: the total weighted earliness, the total weighted tardiness and the total weighted waiting time. The criterion takes into account the costs of storing semi-manufactured products in the course of production and ready-made products as well as penalties for not meeting the deadlines stated in the conditions of the contract with customer. To solve the problem, three constructive algorithms and three metaheuristics (based one Tabu Search and Simulated Annealing techniques) are developed and experimentally analyzed. All the proposed algorithms operate on the notion of so-called operation processing order, i.e. the order of operations on each machine. We show that the problem of schedule construction on the base of a given operation processing order can be reduced to the linear programming task. We also propose some approximation algorithm for schedule construction and show the conditions of its optimality.
Resumo:
Interdisciplinary studies are fundamental to the signature practices for the middle years of schooling. Middle years researchers claim that interdisciplinarity in teaching appropriately meets the needs of early adolescents by tying concepts together, providing frameworks for the relevance of knowledge, and demonstrating the linking of disparate information for solution of novel problems. Cognitive research is not wholeheartedly supportive of this position. Learning theorists assert that application of knowledge in novel situations for the solution of problems is actually dependent on deep discipline based understandings. The present research contrasts the capabilities of early adolescent students from discipline based and interdisciplinary based curriculum schooling contexts to successfully solve multifaceted real world problems. This will inform the development of effective management of middle years of schooling curriculum.
Resumo:
We investigated the relative importance of vision and proprioception in estimating target and hand locations in a dynamic environment. Subjects performed a position estimation task in which a target moved horizontally on a screen at a constant velocity and then disappeared. They were asked to estimate the position of the invisible target under two conditions: passively observing and manually tracking. The tracking trials included three visual conditions with a cursor representing the hand position: always visible, disappearing simultaneously with target disappearance, and always invisible. The target’s invisible displacement was systematically underestimated during passive observation. In active conditions, tracking with the visible cursor significantly decreased the extent of underestimation. Tracking of the invisible target became much more accurate under this condition and was not affected by cursor disappearance. In a second experiment, subjects were asked to judge the position of their unseen hand instead of the target during tracking movements. Invisible hand displacements were also underestimated when compared with the actual displacement. Continuous or brief presentation of the cursor reduced the extent of underestimation. These results suggest that vision–proprioception interactions are critical for representing exact target–hand spatial relationships, and that such sensorimotor representation of hand kinematics serves a cognitive function in predicting target position. We propose a hypothesis that the central nervous system can utilize information derived from proprioception and/or efference copy for sensorimotor prediction of dynamic target and hand positions, but that effective use of this information for conscious estimation requires that it be presented in a form that corresponds to that used for the estimations.
Resumo:
In the quest for shorter time-to-market, higher quality and reduced cost, model-driven software development has emerged as a promising approach to software engineering. The central idea is to promote models to first-class citizens in the development process. Starting from a set of very abstract models in the early stage of the development, they are refined into more concrete models and finally, as a last step, into code. As early phases of development focus on different concepts compared to later stages, various modelling languages are employed to most accurately capture the concepts and relations under discussion. In light of this refinement process, translating between modelling languages becomes a time-consuming and error-prone necessity. This is remedied by model transformations providing support for reusing and automating recurring translation efforts. These transformations typically can only be used to translate a source model into a target model, but not vice versa. This poses a problem if the target model is subject to change. In this case the models get out of sync and therefore do not constitute a coherent description of the software system anymore, leading to erroneous results in later stages. This is a serious threat to the promised benefits of quality, cost-saving, and time-to-market. Therefore, providing a means to restore synchronisation after changes to models is crucial if the model-driven vision is to be realised. This process of reflecting changes made to a target model back to the source model is commonly known as Round-Trip Engineering (RTE). While there are a number of approaches to this problem, they impose restrictions on the nature of the model transformation. Typically, in order for a transformation to be reversed, for every change to the target model there must be exactly one change to the source model. While this makes synchronisation relatively “easy”, it is ill-suited for many practically relevant transformations as they do not have this one-to-one character. To overcome these issues and to provide a more general approach to RTE, this thesis puts forward an approach in two stages. First, a formal understanding of model synchronisation on the basis of non-injective transformations (where a number of different source models can correspond to the same target model) is established. Second, detailed techniques are devised that allow the implementation of this understanding of synchronisation. A formal underpinning for these techniques is drawn from abductive logic reasoning, which allows the inference of explanations from an observation in the context of a background theory. As non-injective transformations are the subject of this research, there might be a number of changes to the source model that all equally reflect a certain target model change. To help guide the procedure in finding “good” source changes, model metrics and heuristics are investigated. Combining abductive reasoning with best-first search and a “suitable” heuristic enables efficient computation of a number of “good” source changes. With this procedure Round-Trip Engineering of non-injective transformations can be supported.
Resumo:
Image-based visual servo (IBVS) is a simple, efficient and robust technique for vision-based control. Although technically a local method in practice it demonstrates almost global convergence. However IBVS performs very poorly for cases that involve large rotations about the optical axis. It is well known that re-parameterizing the problem by using polar, instead of Cartesian coordinates, of feature points overcomes this limitation. First, simulation and experimental results are presented to show the complementarity of these two parameter-izations. We then describe a new hybrid visual servo strategy based on combining polar and Cartesian image Jacobians. © 2009 IEEE.
Resumo:
Machine vision represents a particularly attractive solution for sensing and detecting potential collision-course targets due to the relatively low cost, size, weight, and power requirements of the sensors involved (as opposed to radar). This paper describes the development and evaluation of a vision-based collision detection algorithm suitable for fixed-wing aerial robotics. The system was evaluated using highly realistic vision data of the moments leading up to a collision. Based on the collected data, our detection approaches were able to detect targets at distances ranging from 400m to about 900m. These distances (with some assumptions about closing speeds and aircraft trajectories) translate to an advanced warning of between 8-10 seconds ahead of impact, which approaches the 12.5 second response time recommended for human pilots. We make use of the enormous potential of graphic processing units to achieve processing rates of 30Hz (for images of size 1024-by- 768). Currently, integration in the final platform is under way.
Resumo:
Machine vision represents a particularly attractive solution for sensing and detecting potential collision-course targets due to the relatively low cost, size, weight, and power requirements of vision sensors (as opposed to radar and TCAS). This paper describes the development and evaluation of a real-time vision-based collision detection system suitable for fixed-wing aerial robotics. Using two fixed-wing UAVs to recreate various collision-course scenarios, we were able to capture highly realistic vision (from an onboard camera perspective) of the moments leading up to a collision. This type of image data is extremely scarce and was invaluable in evaluating the detection performance of two candidate target detection approaches. Based on the collected data, our detection approaches were able to detect targets at distances ranging from 400m to about 900m. These distances (with some assumptions about closing speeds and aircraft trajectories) translate to an advanced warning of between 8-10 seconds ahead of impact, which approaches the 12.5 second response time recommended for human pilots. We overcame the challenge of achieving real-time computational speeds by exploiting the parallel processing architectures of graphics processing units found on commercially-off-the-shelf graphics devices. Our chosen GPU device suitable for integration onto UAV platforms can be expected to handle real-time processing of 1024 by 768 pixel image frames at a rate of approximately 30Hz. Flight trials using manned Cessna aircraft where all processing is performed onboard will be conducted in the near future, followed by further experiments with fully autonomous UAV platforms.
Resumo:
Visual localization systems that are practical for autonomous vehicles in outdoor industrial applications must perform reliably in a wide range of conditions. Changing outdoor conditions cause difficulty by drastically altering the information available in the camera images. To confront the problem, we have developed a visual localization system that uses a surveyed three-dimensional (3D)-edge map of permanent structures in the environment. The map has the invariant properties necessary to achieve long-term robust operation. Previous 3D-edge map localization systems usually maintain a single pose hypothesis, making it difficult to initialize without an accurate prior pose estimate and also making them susceptible to misalignment with unmapped edges detected in the camera image. A multihypothesis particle filter is employed here to perform the initialization procedure with significant uncertainty in the vehicle's initial pose. A novel observation function for the particle filter is developed and evaluated against two existing functions. The new function is shown to further improve the abilities of the particle filter to converge given a very coarse estimate of the vehicle's initial pose. An intelligent exposure control algorithm is also developed that improves the quality of the pertinent information in the image. Results gathered over an entire sunny day and also during rainy weather illustrate that the localization system can operate in a wide range of outdoor conditions. The conclusion is that an invariant map, a robust multihypothesis localization algorithm, and an intelligent exposure control algorithm all combine to enable reliable visual localization through challenging outdoor conditions.
Resumo:
This paper describes the real time global vision system for the robot soccer team the RoboRoos. It has a highly optimised pipeline that includes thresholding, segmenting, colour normalising, object recognition and perspective and lens correction. It has a fast ‘paint’ colour calibration system that can calibrate in any face of the YUV or HSI cube. It also autonomously selects both an appropriate camera gain and colour gains robot regions across the field to achieve colour uniformity. Camera geometry calibration is performed automatically from selection of keypoints on the field. The system achieves a position accuracy of better than 15mm over a 4m × 5.5m field, and orientation accuracy to within 1°. It processes 614 × 480 pixels at 60Hz on a 2.0GHz Pentium 4 microprocessor.
Resumo:
The Simultaneous Localisation And Mapping (SLAM) problem is one of the major challenges in mobile robotics. Probabilistic techniques using high-end range finding devices are well established in the field, but recent work has investigated vision-only approaches. We present an alternative approach to the leading existing techniques, which extracts approximate rotational and translation velocity information from a vehicle-mounted consumer camera, without tracking landmarks. When coupled with an existing SLAM system, the vision module is able to map a 45 metre long indoor loop and a 1.6 km long outdoor road loop, without any parameter or system adjustment between tests. The work serves as a promising pilot study into ground-based vision-only SLAM, with minimal geometric interpretation of the environment.
Resumo:
The implementation of a robotic security solution generally requires one algorithm to route the robot around the environment and another algorithm to perform anomaly detection. Solutions to the routing problem require the robot to have a good estimate of its own pose. We present a novel security system that uses metrics generated by the localisation algorithm to perform adaptive anomaly detection. The localisation algorithm is a vision-based SLAM solution called RatSLAM, based on mechanisms within the hippocampus. The anomaly detection algorithm is based on the mechanisms used by the immune system to identify threats to the body. The system is explored using data gathered within an unmodified office environment. It is shown that the algorithm successfully reacts to the presence of people and objects in areas where they are not usually present and is tolerised against the presence of people in environments that are usually dynamic.
Resumo:
Simultaneous Localization And Mapping (SLAM) is one of the major challenges in mobile robotics. Probabilistic techniques using high-end range finding devices are well established in the field, but recent work has investigated vision only approaches. This paper presents a method for generating approximate rotational and translation velocity information from a single vehicle-mounted consumer camera, without the computationally expensive process of tracking landmarks. The method is tested by employing it to provide the odometric and visual information for the RatSLAM system while mapping a complex suburban road network. RatSLAM generates a coherent map of the environment during an 18 km long trip through suburban traffic at speeds of up to 60 km/hr. This result demonstrates the potential of ground based vision-only SLAM using low cost sensing and computational hardware.
Resumo:
Conventional cameras have limited dynamic range, and as a result vision-based robots cannot effectively view an environment made up of both sunny outdoor areas and darker indoor areas. This paper presents an approach to extend the effective dynamic range of a camera, achieved by changing the exposure level of the camera in real-time to form a sequence of images which collectively cover a wide range of radiance. Individual control algorithms for each image have been developed to maximize the viewable area across the sequence. Spatial discrepancies between images, caused by the moving robot, are improved by a real-time image registration process. The sequence is then combined by merging color and contour information. By integrating these techniques it becomes possible to operate a vision-based robot in wide radiance range scenes.
Resumo:
The concept of "fair basing" is widely acknowledged as a difficult area of patent law. This article maps the development of fair basing law to demonstrate how some of the difficulties have arisen. Part I of the article traces the development of the branches of patent law that were swept under the nomenclature of "fair basing" by British legislation in 1949. It looks at the early courts' approach to patent construction, examines the early origin of fair basing and what it was intended to achiever. Part II of the article considers the modern interpretation of fair basing, which provides a striking contrast to its historical context. Without any consistent judicial approach to construction the doctrine has developed inappropriately, giving rise to both over-strict and over-generous approaches.