947 resultados para University of California (1868-1952)
Resumo:
Looking south to front of Smith Hall, Chapman College, Orange, California. This building was completed in 1913 as the Science Building for Orange Union High School and was acquired by Chapman in 1954. In 1988 it was named in honor of former president G.T. (Buck) Smith and his wife, Joni. Buck Smith served as president of the university from 1977 to 1988. This building (2 floors, basement, 15,263 sq.ft.) houses the Psychology Department and is listed in the National Registry for Historical Buildings.
Resumo:
Smith Hall, Chapman College, Orange, California, looking southwest. This building was completed in 1913 as the Science Building for Orange Union High School and was acquired by Chapman in 1954. In 1988 it was named in honor of former president G.T. (Buck) Smith and his wife, Joni. Buck Smith served as president of the university from 1977 to 1988. This building (2 floors, basement, 15,263 sq.ft.) houses the Psychology Department and is listed in the National Registry for Historical Buildings.
Resumo:
View across lawn of Smith Hall, Chapman College, Orange, California. This building was completed in 1913 as the Science Building for Orange Union High School and was acquired by Chapman in 1954. In 1988 it was named in honor of former president G.T. (Buck) Smith and his wife, Joni. Buck Smith served as president of the university from 1977 to 1988. This building (2 floors, basement, 15,263 sq.ft.) houses the Psychology Department and is listed in the National Registry for Historical Buildings.
Resumo:
Chapman Stadium shortly before demolition, Chapman University, Orange, California, 2005. This stadium was originally constructed in 1934 by Orange Union High School, Orange, California. Ownership transferred to Chapman College in 1954. It was re-named in 2000 after the son of the university's namesake, Irvin "Ernie" C. Chapman, who played football at Chapman in the early 1930's. The stadium was torn down in 2005 and fully rebuilt and is now part of the Erin J. Lastinger Athletics Complex at Chapman University.
Resumo:
High-resolution records of the past 2000 yr are compared in a north–south transect (28° N to 24° N) of three cores from the eastern slopes of the Guaymas, Carmen, and Pescadero Basins of the Gulf of California (hereafter referred to as the “Gulf”). Evenly-spaced samples from the varved sediments in each core allow sample resolution ranging from ∼ 16 to ∼ 37 yr. Diatoms and silicoflagellates capture the seasonal variation between a late fall to early spring period of high biosiliceous productivity, that is driven by northwest winds, and a summer period of warmer, more stratified waters during which these winds slacken and/or reverse direction (monsoonal flow). As these winds decrease, tropical waters enter the Gulf and spread northward. Individual samples represent a composite of 7 to 23 yr of deposition and are assumed to record the relative dominance of the winter vs. summer floral components. Intervals of enhanced summer incursion of tropical waters, alternating with periods of increased late fall to early spring biosiliceous productivity are recorded in all three cores. Regularly spaced cycles (∼ 100 yr duration) of Octactis pulchra, a silicoflagellate proxy for lower SST and high productivity, and Azpeitia nodulifera, a tropical diatom, occur between ∼ A.D. 400 and ∼ 1700 in the more nearshore Carmen Basin core, NH01-21 (26.3° N), suggesting a possible solar influence on coastal upwelling. Cores BAM80 E-17 (27.9° N) and NH01-26 (24.3° N) contain longer-duration cycles of diatoms and silicoflagellates. The early part of Medieval Climate Anomaly (∼ A.D. 900 to 1200) is characterized by two periods of reduced productivity (warmer SST) with an intervening high productivity (cool) interval centered at ∼ A.D. 1050. Reduced productivity and higher SST also characterize the record of the last ∼ 100 to 200 yr in these cores. Solar variability appears to be driving productivity cycles, as intervals of increased radiocarbon production (sunspot minima) correlate with intervals of enhanced productivity. It is proposed that increased winter cooling of the atmosphere above southwest U.S. during sunspot minima causes intensification of the northwest winds that blow down the Gulf during the late fall to early spring, leading to intensified overturn of surface waters and enhanced productivity. A new silicoflagellate species, Dictyocha franshepardii Bukry, is described and illustrated.
Resumo:
Deep Sea Drilling Project Site 480 (27°54.10’N, 111°39.34’W; 655 m water depth) contains a high resolution record of paleoceanographic change of the past 15 000 years for the Guaymas Basin, a region of very high diatom productivity within the central Gulf of California. Analyses of diatoms and silicoflagellates were completed on samples spaced every 40-50 yr, whereas ICP-AES geochemical analyses were completed on alternate samples (sample spacing 80-100 yr). The Bolling-Allerod interval (14.6-12.9 ka) (note, ka refers to 1000 calendar years BP throughout this report) is characterized by an increase in biogenic silica and a decline in calcium carbonate relative to surrounding intervals, suggesting conditions somewhat similar to those of today. The Younger Dryas event (12.9-11.6 ka) is marked by a major drop in biogenic silica and an increase in calcium carbonate. Increasing relative percentage contributions of Azpeitia nodulifera and Dictyocha perlaevis (a tropical diatom and silicoflagellate, respectively) and reduced numbers of the silicoflagellate Octactis pulchra are supportive of reduced upwelling of nutrient-rich waters. Between 10.6 and 10.0 ka, calcium carbonate and A. nodulifera abruptly decline at DSDP 480, while Roperia tesselata, a diatom indicative of winter upwelling in the modern-day Gulf, increases sharply in numbers. A nearly coincident increase in the silicoflagellate Dictyocha stapedia suggests that waters above DSDP 480 were more similar to the cooler and slightly more saline waters of the northern Gulf during much of the early and middle parts of the Holocene (~10 to 3.2 ka). At about 6.2 ka a stepwise increase in biogenic silica and the reappearance of the tropical diatom A. nodulifera marks a major change in oceanographic conditions in the Gulf. A winter shift to more northwesterly winds may have occurred at this time along with the onset of periodic northward excursions (El Nino-driven?) of the North Equatorial Countercurrent during the summer. Beginning between 2.8 and 2.4 ka, the amplitude of biogenic silica and wt% Fe, Al, and Ti (proxies of terrigenous input) increase, possibly reflecting intensification of ENSO cycles and the establishment of modern oceanographic conditions in the Gulf. Increased numbers of O. pulchra after 2.8 ka suggest enhanced spring upwelling.
Resumo:
v.10:no.13(1952)
Resumo:
v.7:no.1 (1952)
Resumo:
v.34:pt.2 (1952)
Resumo:
v.35:pt.1 (1952)
Resumo:
Richard Bull, architect. Known at various times as Detroit Observatory, Campus Observatory, Old Observatory. Observatory from northwest with pine trees and summer garden. On verso: A.L. Colton, Photographer, Ann Arbor, Michigan. Views of the State University a Specialty.
Resumo:
Richard Bull, architect. Known at various times as Detroit Observatory, Campus Observatory, Old Observatory. Stereoscopic photograph showing the 1868 director's residence addition. James C. Watson (wearing top hat) is seen with a telescope on a tripod; his wife, Annette, is standing at the porch. (Source: A Creation of His Own: Tappan's Detroit Observatory by Patricia S. Whitesell) On verso: Views at University of Michigan, Ann Arbor
Resumo:
Built 1840. Professors' Houses (East Residence) 1840-1868. University Hospital 1868-1891. Additions in 1877 and after in the form of two parallel wings built out from back of house and several additions onto them. Dental College 1891-1908. Building removed 1908. Replaced by new Chemistry Building 1910. On verso: Photographed in 1887 by A.L. Colton of '89