999 resultados para Universal Composition
Resumo:
Species identification based on short sequences of DNA markers, that is, DNA barcoding, has emerged as an integral part of modern taxonomy. However, software for the analysis of large and multilocus barcoding data sets is scarce. The Basic Local Alignment Search Tool (BLAST) is currently the fastest tool capable of handling large databases (e.g. >5000 sequences), but its accuracy is a concern and has been criticized for its local optimization. However, current more accurate software requires sequence alignment or complex calculations, which are time-consuming when dealing with large data sets during data preprocessing or during the search stage. Therefore, it is imperative to develop a practical program for both accurate and scalable species identification for DNA barcoding. In this context, we present VIP Barcoding: a user-friendly software in graphical user interface for rapid DNA barcoding. It adopts a hybrid, two-stage algorithm. First, an alignment-free composition vector (CV) method is utilized to reduce searching space by screening a reference database. The alignment-based K2P distance nearest-neighbour method is then employed to analyse the smaller data set generated in the first stage. In comparison with other software, we demonstrate that VIP Barcoding has (i) higher accuracy than Blastn and several alignment-free methods and (ii) higher scalability than alignment-based distance methods and character-based methods. These results suggest that this platform is able to deal with both large-scale and multilocus barcoding data with accuracy and can contribute to DNA barcoding for modern taxonomy. VIP Barcoding is free and available at http://msl.sls.cuhk.edu.hk/vipbarcoding/.
Resumo:
Biodiesels produced from different feedstocks usually have wide variations in their fatty acid methyl ester (FAME) so that their physical properties and chemical composition are also different. The aim of this study is to investigate the effect of the physical properties and chemical composition of biodiesels on engine exhaust particle emissions. Alongside with neat diesel, four biodiesels with variations in carbon chain length and degree of unsaturation have been used at three blending ratios (B100, B50, B20) in a common rail engine. It is found that particle emission increased with the increase of carbon chain length. However, for similar carbon chain length, particle emissions from biodiesel having relatively high average unsaturation are found to be slightly less than that of low average unsaturation. Particle size is also found to be dependent on fuel type. The fuel or fuel mix responsible for higher particle mass (PM) and particle number (PN) emissions is also found responsible for larger particle median size. Particle emissions reduced consistently with fuel oxygen content regardless of the proportion of biodiesel in the blends, whereas it increased with fuel viscosity and surface tension only for higher diesel–biodiesel blend percentages (B100, B50). However, since fuel oxygen content increases with the decreasing carbon chain length, it is not clear which of these factors drives the lower particle emission. Overall, it is evident from the results presented here that chemical composition of biodiesel is more important than its physical properties in controlling exhaust particle emissions.
Resumo:
The long-term vision of economic security and social participation for people with a disability held by disability activists and policy-makers has not been realised on a global scale. This is despite the implementation of various poverty alleviation initiatives by international and national governments. Indeed within advanced Western liberal democracies, the inequalities and poverty gaps have widened rather than closed. This article is based on findings from a historical-comparative policy and discourse analysis of disability income support system in Australia and the Basic Income model. The findings suggest that a model such as Basic Income, grounded in principles of social citizenship, goes some way to maintaining an adequate level of subsistence for people with a disability. The article concludes by presenting some challenges and a commitment to transforming income support policy.
Resumo:
The Codex Alimentarius Commission of the Food and Agriculture Organization of the United Nations (FAO) and the World Health Organization (WHO) develops food standards, guidelines and related texts for protecting consumer health and ensuring fair trade practices globally. The major part of the world's population lives in more than 160 countries that are members of the Codex Alimentarius. The Codex Standard on Infant Formula was adopted in 1981 based on scientific knowledge available in the 1970s and is currently being revised. As part of this process, the Codex Committee on Nutrition and Foods for Special Dietary Uses asked the ESPGHAN Committee on Nutrition to initiate a consultation process with the international scientific community to provide a proposal on nutrient levels in infant formulae, based on scientific analysis and taking into account existing scientific reports on the subject. ESPGHAN accepted the request and, in collaboration with its sister societies in the Federation of International Societies on Pediatric Gastroenterology, Hepatology and Nutrition, invited highly qualified experts in the area of infant nutrition to form an International Expert Group (IEG) to review the issues raised. The group arrived at recommendations on the compositional requirements for a global infant formula standard which are reported here.
Resumo:
Objective: To develop bioelectrical impedance analysis (BIA) equations to predict total body water (TBW) and fat-free mass (FFM) of Sri Lankan children. Subjects/Methods: Data were collected from 5- to 15-year-old healthy children. They were randomly assigned to validation (M/F: 105/83) and cross-validation (M/F: 53/41) groups. Height, weight and BIA were measured. TBW was assessed using isotope dilution method (D2 O). Multiple regression analysis was used to develop preliminary equations and cross-validated on an independent group. Final prediction equation was constructed combining the two groups and validated by PRESS (prediction of sum of squares) statistics. Impedance index (height2/impedance; cm2/Ω), weight and sex code (male = 1; female = 0) were used as variables. Results: Independent variables of the final prediction equation for TBW were able to predict 86.3% of variance with root means-squared error (RMSE) of 2.1l. PRESS statistics was 2.1l with press residuals of 1.2l. Independent variables were able to predict 86.9% of variance of FFM with RMSE of 2.7 kg. PRESS statistics was 2.8 kg with press residuals of 1.4 kg. Bland Altman technique showed that the majority of the residuals were within mean bias±1.96 s.d. Conclusions: Results of this study provide BIA equation for the prediction of TBW and FFM in Sri Lankan children. To the best of our knowledge there are no published BIA prediction equations validated on South Asian populations. Results of this study need to be affirmed by more studies on other closely related populations by using multi-component body composition assessment.
Resumo:
Objectives: Obesity is a disease with excess body fat where health is adversely affected. Therefore it is prudent to make the diagnosis of obesity based on the measure of percentage body fat. Body composition of a group of Australian children of Sri Lankan origin were studied to evaluate the applicability of some bedside techniques in the measurement of percentage body fat. Methods: Height (H) and weight (W) was measured and BMI (W/H2) calculated. Bioelectrical impedance analysis (BIA) was measured using tetra polar technique with an 800 μA current of 50 Hz frequency. Total body water was used as a reference method and was determined by deuterium dilution and fat free mass and hence fat mass (FM) derived using age and gender specific constants. Percentage FM was estimated using four predictive equations, which used BIA and anthropometric measurements. Results: Twenty-seven boys and 15 girls were studied with mean ages being 9.1 years and 9.6 years, respectively. Girls had a significantly higher FM compared to boys. The mean percentage FM of boys (22.9 ± 8.7%) was higher than the limit for obesity and for girls (29.0 ± 6.0%) it was just below the cut-off. BMI was comparatively low. All but BIA equation in boys under estimated the percentage FM. The impedance index and weight showed a strong association with total body water (r 2 = 0.96, P < 0.001). Except for BIA in boys all other techniques under diagnosed obesity. Conclusions: Sri Lankan Australian children appear to have a high percentage of fat with a low BMI and some of the available indirect techniques are not helpful in the assessment of body composition. Therefore ethnic and/or population specific predictive equations have to be developed for the assessment of body composition, especially in a multicultural society using indirect methods such as BIA or anthropometry.
Resumo:
The power to influence others in ever-expanding social networks in the new knowledge economy is tied to capabilities with digital media production. This chapter draws on research in elementary classrooms to examine the repertoires of cross-disciplinary knowledge that literacy learners need to produce innovative digital media via the “social web”. It focuses on the knowledge processes that occurred when elementary students engaged in multimodal text production with new digital media. It draws on Kalantzis and Cope’s (2008) heuristic for theorizing “Knowledge Processes” in the Learning by Design approach to pedagogy. Learners demonstrate eight “Knowledge Processes” across different subject domains, skills areas, and sensibilities. Drawing data from media-based lessons across several classroom and schools, this chapter examines what kinds of knowledge students utilize when they produce digital, multimodal texts in the classroom. The Learning by Design framework is used as an analytic tool to theorize how students learn when they engaged in a specific domain of learning – digital media production.
Resumo:
Background: Better understanding of body composition and energy metabolism in pediatric liver disease may provide a scientific basis for improved medical therapy aimed at achieving optimal nutrition, slowing progression to end-stage liver disease (ESLD), and improving the outcome of liver transplantation. Methods: Twenty-one children less than 2 years of age with ESLD awaiting liver transplantation and 15 healthy, aged-matched controls had body compartment analysis using a four compartment model (body cell mass, fat mass, extracellular water, and extracellular solids). Subjects also had measurements of resting energy expenditure (REE) and respiratory quotient (RQ) by indirect calorimetry. Nine patients and 15 control subjects also had measurements of total energy expenditure (TEE) using doubly labelled water. Results: Mean weights and heights were similar in the two groups. Compared with control subjects, children with ESLD had higher relative mean body cell mass (33 ± 2% vs 29 ± 1% of body weight, P < 0.05), but had similar fat mass, extracellular water, and extracellular solid compartments (18% vs 20%, 41% vs 38%, and 7% vs 13% of body weight respectively). Compared with control subjects, children with ESLD had 27% higher mean REE/body weight (0.285 ± 0.013 vs 0.218. ± 0.013 mJ/kg/24h, P < 0.001), 16% higher REE/unit cell mass (P < 0.05); and lower mean RQ (P < 0.05). Mean TEE of patients was 4.70 ± 0.49 mJ/24h vs 3.19 ± 0.76 in controls, (P < 0.01). Conclusions: In children, ESLD is a hypermetabolic state adversely affecting the relationship between metabolic and non-metabolic body compartments. There is increased metabolic activity within the body cell mass with excess lipid oxidation during fasting and at rest. These findings have implications for the design of appropriate nutritional therapy.
Resumo:
Patients with anorexia nervosa (AN) have low body weight, depleted fat stores, and reduced muscle mass. Both total body potassium (TBK) and bioelectrical impedance analysis (BIA) have been used to measure the body composition of these patients.1–4 Whereas TBK accurately measures body cell mass, the metabolically active compartment of the body, whole body potassium counters are expensive and not readily available. The purpose of this study was to investigate the potential of multiple frequency BIA (MFBIA) to monitor changes in body compartments in patients with AN.
Resumo:
A new quaternary fast-ion conducting silver molybdo-arsenate [Agl-Ag2O-(MoO3 + As2O5)] (SMA) glassy system has been prepared using the melt-quenching technique for various dopant salt (Agl) concentrations by fixing the formers (MoO3 + As2O5) composition and the modifier (Ag2O) to formers (M/F) ratio. The prepared compounds were characterized by X-ray diffraction. The impedance measurements were made on different Agl compositions of the SMA glasses as a function of frequency (6.5 Hz-65 kHz) and temperature (303-343 K), using the Solatron frequency-response analyser(model 1250). The bulk conductivity and the appropriate physical model (equivalent circuit) of the SMA glass were obtained from the impedance analysis. The a.c. conductivity was calculated for different Agl compositions of SMA glasses at various temperatures and the obtained a.c. conductivity results were analysed using Jonscher's Universal Law. The conduction mechanism for the highest conducting SMA glassy compound has been explained using the diffusion path model.
Resumo:
The process view concept deploys a partial and temporal representation to adjust the visible view of a business process according to various perception constraints of users. Process view technology is of practical use for privacy protection and authorization control in process-oriented business management. Owing to complex organizational structure, it is challenging for large companies to accurately specify the diverse perception of different users over business processes. Aiming to tackle this issue, this article presents a role-based process view model to incorporate role dependencies into process view derivation. Compared to existing process view approaches, ours particularly supports runtime updates to the process view perceivable to a user with specific view merging operations, thereby enabling the dynamic tracing of process perception. A series of rules and theorems are established to guarantee the structural consistency and validity of process view transformation. A hypothetical case is conducted to illustrate the feasibility of our approach, and a prototype is developed for the proof-of-concept purpose.
Resumo:
Numerical analysis of cracked structures often involves numerical estimation of stress intensity factors (SIFs) at a crack tip/front. A newly developed formulation called universal crack closure integral (UCCI) for the evaluation of potential energy release rates (PERRs) and the corresponding SIFs is presented in this paper. Unlike the existing element dedicated forms of crack closure integrals (MCCI, VCCI) with application limited to finite element analysis, this new numerical SIF/PERR estimation technique is independent of the basic stress analysis procedure, making it universally applicable. The second merit of this procedure is that it avoids the generally error-producing zones close to the crack tip/front singularity. The UCCI procedure, based on Irwin's original CCI, is formulated and explored using a simple 2D problem of a straight crack in an infinite sheet. It is then applied to some three-dimensional crack geometries with the stresses and displacements obtained from a boundary element program.
Resumo:
We investigated the influence of different gas environments on the fabrication of surfaces, homogeneously covered with equally sized and spaced micro-structures. Two types of structures have been successfully micro-machined with a femtosecond laser on titanium surfaces in various atmospheres. The surface chemistry of samples machined in oxygen and helium shows TiO2, while machining in nitrogen leads to an additional share of TiN. The actual surface structure was found to vary significantly as a function of the gas environment. We found that the ablated particles and their surface triggered two consecutive events: The optical properties of the gas environment became non-isotropic which then led to the pulse intensity being redistributed throughout the cross section of the laser beam. Additionally, the effective intensity was further reduced for TiN surfaces due to TiN's high reflectivity. Thus, the settings for the applied raster-scanning machining method had to be adjusted for each gas environment to produce comparable structures. In contrast to previous studies, where only noble gases were found suitable to produce homogeneous patches, we obtained them in an oxygen environment.
Resumo:
Sr2FeMoO6 oxides exhibit a half-metallic ferromagnetic (HM-FM) ground state and peculiar magnetic and magnetotransport properties, which are interesting for applications in the emerging field of spintronics and attractive for fundamental research in the field of heavily correlated electron systems. Sr2FeWO6 is an insulator with an antiferromagnetic (I-AFM) ground state. The solid solutions Sr2FeMoxW1-xO6 also have peculiar properties-W doping enhances chemical order which allows stabilization of the HM-FM state; as the W content exceeds a certain value a metal to insulator transition (MIT) occurs. The role of W in determining the physical properties of Sr2FeMoxW1-xO6 systems has been a matter of intense investigation. This work deals with the problem of the structural and electronic changes related to the MIT from a local perspective by means of x-ray absorption spectroscopy (XAS). This technique allows one to probe in detail the local structure and electronic modifications around selected absorber ions (W, Mo, Fe and Sr in our case). The results of XAS analysis in the whole composition range (0 <= x <= 1), in the near edge (XANES) and extended (EXAFS) regions, demonstrate an abrupt change of the local structure around the Fe and Mo sites at the critical composition, x(c). This change represents the microstructural counterpart associated with the MIT. Conversely, the local structure and electronic configuration of W ions remain unaltered in the whole composition range, suggesting indirect participation of W in the MIT.