838 resultados para Uncertainty in Wind Energy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantifying scientific uncertainty when setting total allowable catch limits for fish stocks is a major challenge, but it is a requirement in the United States since changes to national fisheries legislation. Multiple sources of error are readily identifiable, including estimation error, model specification error, forecast error, and errors associated with the definition and estimation of reference points. Our focus here, however, is to quantify the influence of estimation error and model specification error on assessment outcomes. These are fundamental sources of uncertainty in developing scientific advice concerning appropriate catch levels and although a study of these two factors may not be inclusive, it is feasible with available information. For data-rich stock assessments conducted on the U.S. west coast we report approximate coefficients of variation in terminal biomass estimates from assessments based on inversion of the assessment of the model’s Hessian matrix (i.e., the asymptotic standard error). To summarize variation “among” stock assessments, as a proxy for model specification error, we characterize variation among multiple historical assessments of the same stock. Results indicate that for 17 groundfish and coastal pelagic species, the mean coefficient of variation of terminal biomass is 18%. In contrast, the coefficient of variation ascribable to model specification error (i.e., pooled among-assessment variation) is 37%. We show that if a precautionary probability of overfishing equal to 0.40 is adopted by managers, and only model specification error is considered, a 9% reduction in the overfishing catch level is indicated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stock assessments can be problematic because of uncertainties associated with the data or because of simplified assumptions made when modeling biological processes (Rosenberg and Restrepo, 1995). For example, the common assumption in stock assessments that stocks are homogeneous and discrete (i.e., there is no migration between the stocks) is not necessarily true (Kell et al., 2004a, 2004b).

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most behavioral tasks have time constraints for successful completion, such as catching a ball in flight. Many of these tasks require trading off the time allocated to perception and action, especially when only one of the two is possible at any time. In general, the longer we perceive, the smaller the uncertainty in perceptual estimates. However, a longer perception phase leaves less time for action, which results in less precise movements. Here we examine subjects catching a virtual ball. Critically, as soon as subjects began to move, the ball became invisible. We study how subjects trade-off sensory and movement uncertainty by deciding when to initiate their actions. We formulate this task in a probabilistic framework and show that subjects' decisions when to start moving are statistically near optimal given their individual sensory and motor uncertainties. Moreover, we accurately predict individual subject's task performance. Thus we show that subjects in a natural task are quantitatively aware of how sensory and motor variability depend on time and act so as to minimize overall task variability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Uncertainty is ubiquitous in our sensorimotor interactions, arising from factors such as sensory and motor noise and ambiguity about the environment. Setting it apart from previous theories, a quintessential property of the Bayesian framework for making inference about the state of world so as to select actions, is the requirement to represent the uncertainty associated with inferences in the form of probability distributions. In the context of sensorimotor control and learning, the Bayesian framework suggests that to respond optimally to environmental stimuli the central nervous system needs to construct estimates of the sensorimotor transformations, in the form of internal models, as well as represent the structure of the uncertainty in the inputs, outputs and in the transformations themselves. Here we review Bayesian inference and learning models that have been successful in demonstrating the sensitivity of the sensorimotor system to different forms of uncertainty as well as recent studies aimed at characterizing the representation of the uncertainty at different computational levels.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The advantages of timber in wind turbine blade construction are discussed, and its properties emphasized. The use of timber/epoxy construction enables a high technical specification to be achieved. Tables are given for specific compressive strengths, fatigue strengths and flexural modulus for wind epoxy and glass reinforced polyester composites. Cost ratios are also discussed for the two materials and the cost advantage for wood is emphasized. (A.J.)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Brushless Doubly-Fed Machine (BDFM) is attractive for use in wind turbines, especially offshore, as it offers high reliability by virtue of the absence of brushgear. Critical issues in the use of the BDFM in this role at a system level include the appropriate mode of operation, the sizing of associated converter and the control of the machine. At a machine level, the design of the machine and the determination of its ratings are important. Both system and machine issues are reviewed in the light of recent advances in the study of the BDFM, and preliminary comparisons are made with the well-established doubly fed wound rotor induction generator. © 2006 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Housing stock models can be useful tools in helping to assess the environmental and socio-economic impacts of retrofits to residential buildings; however, existing housing stock models are not able to quantify the uncertainties that arise in the modelling process from various sources, thus limiting the role that they can play in helping decision makers. This paper examines the different sources of uncertainty involved in housing stock models and proposes a framework for handling these uncertainties. This framework involves integrating probabilistic sensitivity analysis with a Bayesian calibration process in order to quantify uncertain parameters more accurately. The proposed framework is tested on a case study building, and suggestions are made on how to expand the framework for retrofit analysis at an urban-scale. © 2011 Elsevier Ltd.