920 resultados para Ultrasound sensors


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structural Health Monitoring has gained wide acceptance in the recent past as a means to monitor a structure and provide an early warning of an unsafe condition using real-time data. Utilization of structurally integrated, distributed sensors to monitor the health of a structure through accurate interpretation of sensor signals and real-time data processing can greatly reduce the inspection burden. The rapid improvement of the Fiber Optic Sensor technology for strain, vibration, ultrasonic and acoustic emission measurements in recent times makes it feasible alternative to the traditional strain gauges, PVDF and conventional Piezoelectric sensors used for Non Destructive Evaluation (NDE) and Structural Health Monitoring (SHM). Optical fiber-based sensors offer advantages over conventional strain gauges, and PZT devices in terms of size, ease of embedment, immunity from electromagnetic interference (EMI) and potential for multiplexing a number of sensors. The objective of this paper is to demonstrate the acoustic wave sensing using Extrinsic Fabry-Perot Interferometric (EFPI) sensor on a GFRP composite laminates. For this purpose experiments have been carried out initially for strain measurement with Fiber Optic Sensors on GFRP laminates with intentionally introduced holes of different sizes as defects. The results obtained from these experiments are presented in this paper. Numerical modeling has been carried out to obtain the relationship between the defect size and strain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper addresses the problem of how to select the optimal number of sensors and how to determine their placement in a given monitored area for multimedia surveillance systems. We propose to solve this problem by obtaining a novel performance metric in terms of a probability measure for accomplishing the task as a function of set of sensors and their placement. This measure is then used to find the optimal set. The same measure can be used to analyze the degradation in system 's performance with respect to the failure of various sensors. We also build a surveillance system using the optimal set of sensors obtained based on the proposed design methodology. Experimental results show the effectiveness of the proposed design methodology in selecting the optimal set of sensors and their placement.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The term Structural Health Monitoring has gained wide acceptance in the recent pastas a means to monitor a structure and provide an early warning of an unsafe conditionusing real-time data. Utilization of structurally integrated, distributed sensors tomonitor the health of a structure through accurate interpretation of sensor signals andreal-time data processing can greatly reduce the inspection burden. The rapidimprovement of the Fiber Bragg Grating sensor technology for strain, vibration andacoustic emission measurements in recent times make them a feasible alternatives tothe traditional strain gauges transducers and conventional Piezoelectric sensors usedfor Non Destructive Evaluation (NDE) and Structural Health Monitoring (SHM).Optical fiber-based sensors offers advantages over conventional strain gauges, PVDFfilm and PZT devices in terms of size, ease of embedment, immunity fromelectromagnetic interference(EMI) and potential for multiplexing a number ofsensors. The objective of this paper is to demonstrate the feasibility of Fiber BraggGrating sensor and compare its utility with the conventional strain gauges and PVDFfilm sensors. For this purpose experiments are being carried out in the laboratory on acomposite wing of a mini air vehicle (MAV). In this paper, the results obtained fromthese preliminary experiments are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Advanced composite structural components made up of Carbon Fibre Reinforced Polymers (CFRP) used in aerospace structures such as in Fuselage, Leading & Trailing edges of wing and tail, Flaps, Elevator, Rudder and entire wing structures encounter most critical type of damage induced by low velocity impact (<10 m/s) loads. Tool dropped during maintenance & service,and hailstone impacts on runways are common and unavoidable low-velocity impacts. These lowvelocity impacts induce defects such as delaminations, matrix cracking and debonding in the layered material, which are sub-surface in nature and are barely visible on the surface known as Barely Visible Impact Damage (BVID). These damages may grow under service load, leading to catastrophic failure of the structure. Hence detection, evaluation and characterization of these types of damage is of major concern in aerospace industries as the life of the component depends on the size and shape of the damage.In this paper, details of experimental investigations carried out and results obtained from a low-velocity impact of 30 Joules corresponding to the hailstone impact on the wing surface,simulated on the 6 mm CFRP laminates using instrumented drop-weight impact testing machine are presented. The Ultrasound C-scan and Infrared thermography imaging techniques were utilized extensively to detect, evaluate and characterize impact damage across the thickness of the laminates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A comparative study of strain response and mechanical properties of rammed earth prisms, has been made using Fiber Bragg Grating (FBG) sensors (optical) and clip-on extensometer (electro-mechanical). The aim of this study is to address the merits and demerits of traditional extensometer vis-à-vis FBG sensor; a uni-axial compression test has been performed on a rammed earth prism to validate its structural properties from the stress - strain curves obtained by two different methods of measurement. An array of FBG sensors on a single fiber with varying Bragg wavelengths (..B), has been used to spatially resolve the strains along the height of the specimen. It is interesting to note from the obtained stress-strain curves that the initial tangent modulus obtained using the FBG sensor is lower compared to that obtained using clip-on extensometer. The results also indicate that the strains measured by both FBG and extensometer sensor follow the same trend and both the sensors register the maximum strain value at the same time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We address a certain inverse problem in ultrasound-modulated optical tomography: the recovery of the amplitude of vibration of scatterers [p(r)] in the ultrasound focal volume in a diffusive object from boundary measurement of the modulation depth (M) of the amplitude autocorrelation of light [phi(r, tau)] traversing through it. Since M is dependent on the stiffness of the material, this is the precursor to elasticity imaging. The propagation of phi(r, tau) is described by a diffusion equation from which we have derived a nonlinear perturbation equation connecting p(r) and refractive index modulation [Delta n(r)] in the region of interest to M measured on the boundary. The nonlinear perturbation equation and its approximate linear counterpart are solved for the recovery of p(r). The numerical results reveal regions of different stiffness, proving that the present method recovers p(r) with reasonable quantitative accuracy and spatial resolution. (C) 2011 Optical Society of America

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A critical revi<:w of the possibilities of measuring the ~artlal pressure of sulfur using solid state galvanic cells )'n;;cd on AgI, C" , B-alumina, CaO-Zr02' Na2S04-I and doped ;:":;, ,,,Ilil "Iltl ,,11: auxiliary "jectrodes are presentlOu. SOIll..., df tllc!iL' sYHtcmH h,}vu inherent limltntlol1$ when <:xl'o" ...d to environments contilining both oxygen and sulfur. Electrode polarization due to electronic conduction in the solid electrolyte is a significant factor limiting the ;lC'e,"'acy of isotlwrm:l1 cell",. The electrochemical flux of{lit' !'\)ndlwl Ill}: Ion LhnHO',h tht' ('!('ctrojyt(~ C:Ul },(,! llIinlnliz(,{j pfUjJL!f cell. dL:~) i.t',11. Noni!:iot.herm~ll cells \.Jlth temperaLure compensated reference electrodes have a number of advantages over thC'ir isothermal counterparts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate a method to recover the Young's modulus (E) of a tissue-mimicking phantom from measurements of ultrasound modulated optical tomography (UMOT). The object is insonified by a dualbeam, confocal ultrasound transducer (US) oscillating at frequencies f(0) and f(0) + Delta f and the variation of modulation depth (M) in the autocorrelation of light traversed through the focal region of the US transducer against Delta f is measured. From the dominant peaks observed in the above variation, the natural frequencies of the insonified region associated with the vibration along the US transducer axis are deduced. A consequence of the above resonance is that the speckle fluctuation at the resonance frequency has a higher signal-to-noise to ratio (SNR). From these natural frequencies and the associated eigenspectrum of the oscillating object, Young's modulus (E) of the material in the focal region is recovered. The working of this method is confirmed by recovering E in the case of three tissue-mimicking phantoms of different elastic modulus values. (C) 2011 Optical Society of America

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The concepts and theoretical origins of conduction domains for solid electrolytes and electrode polarization are outlined briefly. The point electrode made of the ' solid electrolyte material is useful for deflecting the semipermeability flux away from the electrode. The emf of galvanic sensors consisting of two solid electrolytes in intimate contact with each other and in which transport occurs by a common ion is reviewed. The voltage of such cells depends on the chemical potential of the active species at the interface between the two electrolytes, which can be evaluated from the transport properties of electrolytes using a numerical procedure. The factors governing the speed of response of solid electrolyte gas sensors are analyzed. A rigorous expression for the emf of non-isothermal galvanic sensors and the criterion for the design of temperature compensated reference electrodes for nonisothermal galvanic sensors are outlined. Non-isothermal sensors are useful for the continuous monitoring of concentrations or chemical potentials in reactive systems at high temperatures. The principles of operation of galvanic sensors for oxygen, sulphur, oxides of sulphur (SOx,x=2,3), carbon, oxides uf carbon (COx,x= 1,2), oxides of nitrogen (NOx,x= 1,2) and silicon are discussed. The use of auxiliary electrodes in galvanic sensors to expand the detection capability of known solid electrolytes to a large number of species is explained with reference to sensors for sulphur and oxides of sulphur (SOx,x=2,3).Finally the cause of the common errors in galvanic measurements and test for the correct functioning of galvanic sensors is given.