901 resultados para Ultrashort pulses laser Grating
Resumo:
The scaling law of photoionization in few-cycle laser pulses is verified in this paper. By means of numerical solution of time-dependent Schrodinger equation, the photoionization and the asymmetry degree of photoionization of atoms with different binding potential irradiated by various laser pulses are studied. We find that the effect of increasing pulse intensity is compensated by deepening the atomic binding potential. In order to keep the asymmetric photoionization unchanged, if the central frequency of the pulse is enlarged by k times, the atomic binding potential should also be enlarged by k times, and the laser intensity should be enlarged by k(3) times. (c) 2005 Optical Society of America.
Resumo:
We investigate the spectra of a femtosecond pulse train propagating in a resonant two-level atom (TLA) medium. it is found that higher spectral components can be produced even for a 2 pi femtosecond pulse train. Furthermore, the spectral effects depend crucially on both the relative shift phi and the delay time tau between the successive pulses of the femtosecond pulse train.
Resumo:
We investigate the influence of ionization on the propagation and spectral effects of a few-cycle ultrashort laser pulse in a two-level medium. It is found that when the fractional ionization is weak, the production of higher spectral components makes no difference. However, when the two states are essentially depleted before the peak of the laser pulse, the impact of ionization on the higher spectral components is very significant.
Resumo:
By employing pump-probe back longitudinal diffractometry, the electron density and decay dynamics of a weak plasma channel created by a 1-KHz fs laser in air has been investigated. With ultrashort laser pulses of 50 fs and low energy of 0.6 mJ, we observe weak plasma channels with a length similar to 2 cm in air. An analytical reconstruction method of electron density has been analyzed, which is sensitive to the phase shift and channel size. The electron density in the weak plasma channel is extracted to be about 4x10(16) cm(-3). The diameters of the plasma channel and the filament are about 50 and 150 mu m, respectively, and the measurable electron density can be extended to less than 10(15) cm(-3). Moreover, a different time-frequency technique called linearly chirped longitudinal diffractometry is proposed to time-resolved investigate ultrafast ionization dynamics of laser-irradiated gas, laser interaction with cluster beam, etc.
Resumo:
Control of multiple filamentation by laser-induced microlens effect due to a nonlinear interaction of two overlapping laser beams inside a glass plate was demonstrated. Individual or multiple spots on the white light pattern which is a product of multiple filamentation through a mesh can be switched on and off with a very high contrast ratio on a femtosecond time scale. This phenomenon can find applications such as ultrafast optical switch and high-speed sampling. (C) 2005 American Institute of Physics.
Resumo:
Using time-of-flight spectrometry, the interaction of intense femtosecond laser pulses with argon clusters has been studied by measuring the energy and yield of emitted ions. With two different supersonic nozzles, the dependence of average ion energy (E) over bar on cluster size (n) over bar in a large range of (n) over bar approximate to 3 x 10(3) similar to 3 x 10(6) has been measured. The experimental results indicate that when the cluster size (n) over bar <= 3 x 10(5), the average ion energy (E) over bar proportional to (n) over bar (0.5), Coulomb explosion is the dominant expansion mechanism. Beyond this size, the average ion energy gets saturated gradually, the clusters exhibit a mixed Coulomb-hydrodynamic expansion behavior. We also find that with the increasing gas backing pressure, there is a maximum ion yield, the ion yield decreases as the gas backing pressure is further increased.
Resumo:
The photoelectron angular distributions (PADs) from above-threshold ionization of atoms irradiated by one-cycle laser pulses satisfy a scaling law. The scaling law denotes that the main features of the PADs are determined by four dimensionless parameters: (1) the ponderomotive number u(p) = U-p/hw, the ponderomotive energy U-p in units of laser photon energy; (2) the binding number E-b = E-b/h(w), the atomic binding energy E-b in units of laser photon energy; (3) the number of absorbed photons q; (4) the carrier-envelope phase phi(0), the phase of the carrier wave with respect to the envelope. We verify the scaling law by theoretical analysis and numerical calculation, compared to that in long-pulse case. A possible experimental test to verify the scaling law is suggested.
Resumo:
The lifetime of a plasma channel produced by self-guiding intense femtosecond laser pulses in air is largely prolonged by adding a high voltage electrical field in the plasma and by introducing a series of femtosecond laser pulses. An optimal lifetime value is realized through adjusting the delay among these laser pulses. The lifetime of a plasma channel is greatly enhanced to 350 ns by using four sequential intense 100fs( FWHM) laser pulses with an external electrical field of about 350kV/m, which proves the feasibility of prolonging the lifetime of plasma by adding an external electrical field and employing multiple laser pulses. (c) 2006 Optical Society of America.
Resumo:
Neutron production from a thin deuterium-tritium (D-T) foil irradiated by two intense femtosecond laser pulses from opposite sides with zero phase difference is studied analytically and numerically. For the interaction of a laser pulse of amplitude a = 7, focal area 100 mu m(2) and areal density 4.4 x 10(18) cm(-2) with a D-T plasma foil, about 1.17 x 10(21) neutron s(-1) can be obtained, much more than from other methods. The profiles of the ion and electron densities are also calculated.
Resumo:
We experimentally investigate the high-order harmonic generation in argon gas using a driving laser pulse at a center wavelength of 1240 nm. High-contrast fine interference fringes could be observed in the harmonic spectra near the propagation axis, which is attributed to the interference between long and short quantum paths. We also systematically examine the variation of the interference fringe pattern with increasing energy of the driving pulse and with different phase-matching conditions.
Resumo:
In this paper, we briefly summarize two typical morphology characteristics of the self-organized void array induced in bulk of fused silica glass by a tightly focused femtosecond laser beam, such as the key role of high numerical aperture in the void array formation and the concentric-circle-like structure indicated by the top view of the void array. By adopting a physical model which combines the nonlinear propagation of femtosecond laser pulses with the spherical aberration effect (SA) at the interface of two mediums of different refractive indices, reasonable agreements between the simulation results and the experimental results are obtained. By comparing the fluence distributions of the case with both SA and nonlinear effects included and the case with only consideration of SA, we suggest that spherical aberration, which results from the refractive index mismatch between air and fused silica glass, is the main reason for the formation of the self-organized void array. (c) 2008 American Institute of Physics.
Resumo:
A novel scheme to eliminate the artificial background phase jitter is proposed for measuring the carrier-envelope phase drift of tunable infrared femtosecond pulses from an OPA laser. Different from previous methods, a reference spectral interference measurement is performed, which reveals the artificial phase jitter in the measurement process, in addition to the normal f-to-2f interference measurement between the incident laser pulses and it second harmonic. By analyzing the interference fringes, the accurate CEP fluctuation of the incident pulses is obtained. (c) 2008 Optical Society of America
Resumo:
The interaction of a linearly polarized intense laser pulse with an ultrathin nanometer plasma layer is investigated to understand the physics of the ion acceleration. It is shown by the computer simulation that the plasma response to the laser pulse comprises two steps. First, due to the vxB effect, electrons in the plasma layer are extracted and periodic ultrashort relativistic electron bunches are generated every half of a laser period. Second, strongly asymmetric Coulomb explosion of ions in the foil occurs due to the strong electrostatic charge separation, once the foil is burnt through. Followed by the laser accelerated electron bunch, the ion expansion in the forward direction occurs along the laser beam that is much stronger as compared to the backward direction. (c) 2008 American Institute of Physics.