902 resultados para Ultimate Load
The evolution of XY recombination: sexually antagonistic selection versus deleterious mutation load.
Resumo:
Recombination arrest between X and Y chromosomes, driven by sexually antagonistic genes, is expected to induce their progressive differentiation. However, in contrast to birds and mammals (which display the predicted pattern), most cold-blooded vertebrates have homomorphic sex chromosomes. Two main hypotheses have been proposed to account for this, namely high turnover rates of sex-determining systems and occasional XY recombination. Using individual-based simulations, we formalize the evolution of XY recombination (here mediated by sex reversal; the "fountain-of-youth" model) under the contrasting forces of sexually antagonistic selection and deleterious mutations. The shift between the domains of elimination and accumulation occurs at much lower selection coefficients for the Y than for the X. In the absence of dosage compensation, mildly deleterious mutations accumulating on the Y depress male fitness, thereby providing incentives for XY recombination. Under our settings, this occurs via "demasculinization" of the Y, allowing recombination in XY (sex-reversed) females. As we also show, this generates a conflict with the X, which coevolves to oppose sex reversal. The resulting rare events of XY sex reversal are enough to purge the Y from its load of deleterious mutations. Our results support the "fountain of youth" as a plausible mechanism to account for the maintenance of sex-chromosome homomorphy.
Resumo:
BACKGROUND: Allostatic load reflects cumulative exposure to stressors throughout lifetime and has been associated with several adverse health outcomes. It is hypothesized that people with low socioeconomic status (SES) are exposed to higher chronic stress and have therefore greater levels of allostatic load. OBJECTIVE: To assess the association of receiving social transfers and low education with allostatic load. METHODS: We included 3589 participants (1812 women) aged over 35years and under retirement age from the population-based CoLaus study (Lausanne, Switzerland, 2003-2006). We computed an allostatic load index aggregating cardiovascular, metabolic, dyslipidemic and inflammatory markers. A novel index additionally including markers of oxidative stress was also examined. RESULTS: Men with low vs. high SES were more likely to have higher levels of allostatic load (odds ratio (OR)=1.93/2.34 for social transfers/education, 95%CI from 1.45 to 4.17). The same patterns were observed among women. Associations persisted after controlling for health behaviors and marital status. CONCLUSIONS: Low education and receiving social transfers independently and cumulatively predict high allostatic load and dysregulation of several homeostatic systems in a Swiss population-based study. Participants with low SES are at higher risk of oxidative stress, which may justify its inclusion as a separate component of allostatic load.
Resumo:
Quantifying the impacts of inbreeding and genetic drift on fitness traits in fragmented populations is becoming a major goal in conservation biology. Such impacts occur at different levels and involve different sets of loci. Genetic drift randomly fixes slightly deleterious alleles leading to different fixation load among populations. By contrast, inbreeding depression arises from highly deleterious alleles in segregation within a population and creates variation among individuals. A popular approach is to measure correlations between molecular variation and phenotypic performances. This approach has been mainly used at the individual level to detect inbreeding depression within populations and sometimes at the population level but without consideration about the genetic processes measured. For the first time, we used in this study a molecular approach considering both the interpopulation and intrapopulation level to discriminate the relative importance of inbreeding depression vs. fixation load in isolated and non-fragmented populations of European tree frog (Hyla arborea), complemented with interpopulational crosses. We demonstrated that the positive correlations observed between genetic heterozygosity and larval performances on merged data were mainly caused by co-variations in genetic diversity and fixation load among populations rather than by inbreeding depression and segregating deleterious alleles within populations. Such a method is highly relevant in a conservation perspective because, depending on how populations lose fitness (inbreeding vs. fixation load), specific management actions may be designed to improve the persistence of populations.
Resumo:
In this final project the high availability options for PostgreSQL database management system were explored and evaluated. The primary objective of the project was to find a reliable replication system and implement it to a production environment. The secondary objective was to explore different load balancing methods and compare their performance. The potential replication methods were thoroughly examined, and the most promising was implemented to a database system gathering weather information in Lithuania. The different load balancing methods were tested performance wise with different load scenarios and the results were analysed. As a result for this project a functioning PostgreSQL database replication system was built to the Lithuanian Hydrometeorological Service's headquarters, and definite guidelines for future load balancing needs were produced. This study includes the actual implementation of a replication system to a demanding production environment, but only guidelines for building a load balancing system to the same production environment.
Resumo:
The factors responsible for the phenotypic heterogeneity of memory CD4 T cells are unclear. In the present study, we have identified a third population of memory CD4 T cells characterized as CD45RA(+)CCR7(-) that, based on its replication history and the homeostatic proliferative capacity, was at an advanced stage of differentiation. Three different phenotypic patterns of memory CD4 T cell responses were delineated under different conditions of antigen (Ag) persistence and load using CD45RA and CCR7 as markers of memory T cells. Mono-phenotypic CD45RA(-)CCR7(+) or CD45RA(-)CCR7(-) CD4 T cell responses were associated with conditions of Ag clearance (tetanus toxoid-specific CD4 T cell response) or Ag persistence and high load (chronic HIV-1 and primary CMV infections), respectively. Multi-phenotypic CD45RA(-)CCR7(+), CD45RA(-)CCR7(-) and CD45RA(+)CCR7(-) CD4 T cell responses were associated with protracted Ag exposure and low load (chronic CMV, EBV and HSV infections and HIV-1 infection in long-term nonprogressors). The mono-phenotypic CD45RA(-)CCR7(+) response was typical of central memory (T(CM)) IL-2-secreting CD4 T cells, the mono-phenotypic CD45RA(-)CCR7(-) response of effector memory (T(EM)) IFN-gamma-secreting CD4 T cells and the multi-phenotypic response of both IL-2- and IFN-gamma-secreting cells. The present results indicate that the heterogeneity of different Ag-specific CD4 T cell responses is regulated by Ag exposure and Ag load.
Resumo:
Dietary acid load from Western diets may be a risk factor for osteoporosis. It can be estimated by net endogenous acid production (NEAP). No data currently exists for NEAP estimates and bone indices in the very elderly (i.e. > or = 75 y). The aim of this study was to determine the association between NEAP estimates by using the potential renal acid load (PRAL) equation and quantitative bone ultrasound (QUS) measurements at the heel [broadband ultrasound attenuation (BUA)] in Caucasian women. We assessed NEAP and QUS in 401 very elderly Swiss ambulatory women. We evaluated dietary intake and NEAP estimates with a validated FFQ. QUS was measured using Achilles (Lunar). We identified 2 subgroups: 256 women (80.6 y +/- 3; BUA, 96.8 dB/MHz) with a fracture history and the remaining 145 (79.9 y SD 2.9; BUA, 101.7 dB/MHz) without. Women who reported having suffered a fracture had lower BUA (P < 0.001) than nonfractured women but did not differ in nutrient intakes and NEAP. Lower NEAP (P = 0.023) and higher potassium intake (P = 0.033) were correlated with higher BUA, which remained significant even after adjustment for age, BMI, and osteoporosis treatment. BUA was positively correlated with calcium (P = 0.016) and BMI (P < 0.001). Women who reported no fractures had no significant correlations between nutrient intake, NEAP, and BUA. Low nutritional acid load was correlated with higher BUA in very elderly women with a fracture history. Although relatively weak compared with age and BMI, this association was significant and may be an important additional risk factor that might be particularly relevant in frail patients with an already high fracture risk.
Resumo:
Amino acids stimulate the release of glucagon and insulin. To assess the role of aminogenic hyperglucagonemia, we have studied, in healthy young males, the effects of basal (less than 100 pg/ml) and high (200-400 pg/ml) plasma glucagon concentrations on amino acid metabolism during intravenous infusion (0.5 g.h-1.4 h) of a mixture of 15 amino acids. Basal plasma glucagon concentrations were obtained by infusion of somatostatin (0.5 mg/h) plus glucagon (0.25 ng.kg-1.min-1) and high plasma glucagon concentrations by infusion of somatostatin plus glucagon (3.0 ng.kg-1.min-1) or by infusion of amino acids alone. All studies were performed under conditions of euglycemic (83-91 mg/dl) hyperinsulinemia (50-80 microU/ml). Hyperglucagonemia significantly increased 1) net amino acid transport from the extracellular into the intracellular space (by approximately 4%), 2) net degradation of amino acids entering the intracellular space (by approximately 40%), and 3) conversion of degraded amino acids into glucose from 0-10% (basal glucagon) to 70-100% (high glucagon). Hyperglucagonemia did not affect the amount of amino acids excreted in the urine (approximately 4%). We conclude that glucagon plays an important role in the disposition of amino acids by increasing their inward transport, their degradation, and their conversion into glucose.
Resumo:
OBJECTIVES: (1) To evaluate the changes in surface roughness and gloss after simulated toothbrushing of 9 composite materials and 2 ceramic materials in relation to brushing time and load in vitro; (2) to assess the relationship between surface gloss and surface roughness. METHODS: Eight flat specimens of composite materials (microfilled: Adoro, Filtek Supreme, Heliomolar; microhybrid: Four Seasons, Tetric EvoCeram; hybrid: Compoglass F, Targis, Tetric Ceram; macrohybrid: Grandio), two ceramic materials (IPS d.SIGN and IPS Empress polished) were fabricated according to the manufacturer's instructions and optimally polished with up to 4000 grit SiC. The specimens were subjected to a toothbrushing (TB) simulation device (Willytec) with rotating movements, toothpaste slurry and at three different loads (100g/250g/350g). At hourly intervals from 1h to 10h TB, mean surface roughness Ra was measured with an optical sensor and the surface gloss (Gl) with a glossmeter. Statistical analysis was performed for log-transformed Ra data applying two-way ANOVA to evaluate the interaction between load and material and load and brushing time. RESULTS: There was a significant interaction between material and load as well as between load and brushing time (p<0.0001). The microhybrid and hybrid materials demonstrated more surface deterioration with higher loads, whereas with the microfilled resins Heliomolar and Adoro it was vice versa. For ceramic materials, no or little deterioration was observed over time and independent of the load. The ceramic materials and 3 of the composite materials (roughness) showed no further deterioration after 5h of toothbrushing. Mean surface gloss was the parameter which discriminated best between the materials, followed by mean surface roughness Ra. There was a strong correlation between surface gloss and surface roughness for all the materials except the ceramics. The evaluation of the deterioration curves of individual specimens revealed a more or less synchronous course suspecting hinting specific external conditions and not showing the true variability in relation to the tested material. SIGNIFICANCE: The surface roughness and gloss of dental materials changes with brushing time and load and thus results in different material rankings. Apart from Grandio, the hybrid composite resins were more prone to surface changes than microfilled composites. The deterioration potential of a composite material can be quickly assessed by measuring surface gloss. For this purpose, a brushing time of 10h (=72,000 strokes) is needed. In further comparative studies, specimens of different materials should be tested in one series to estimate the true variability.
Resumo:
To investigate the effect of age and change in body composition on the increase in energy expenditure consecutive to the ingestion of a 75-g glucose load, respiratory exchange measurements were performed on 24 subjects, 12 elderly (mean +/- SEM, 73 +/- 1 yr) and 12 young (25 +/- 1 yr). The body weight was comparable, 62 +/- 2 kg in the elderly group vs 61 +/- 3 in the young, but the body fat content of the elderly group was significantly greater than that of the young (29 +/- 2% vs 19 +/- 2%, p less than 0.001). The elderly group presented a slight glucose intolerance according to the World Health Organization (WHO) criteria, with a 120-min plasma glucose of 149 +/- 9 mg/dl (p less than 0.005 vs young). The postabsorptive resting energy expenditure (REE) was 0.83 +/- 0.03 kcal/min in the elderly group vs 0.98 +/- 0.04 in the young (p less than 0.02); this decrease of 15% was mainly related to the decrease in fat free mass (FFM) in the elderly group, which averaged 14%. The difference was not significant when REE was expressed per kg FFM. The glucose-induced thermogenesis (GIT) expressed as percent of energy content of the load was 6.2 +/- 0.6% in the elderly group and 8.9 +/- 0.9% in the young (p less than 0.05). It is concluded that the glucose-induced thermogenesis is decreased in elderly subjects. However, when expressed per kg FFM, the increment in energy expenditure (EE), in response to the glucose load, is not different in elderly subjects, suggesting that the decrease of thermogenesis may be attributed to the age-related decrease in FFM.
Resumo:
BACKGROUND: To test the inflammatory origin of cardiovascular disease, as opposed to its origin in western lifestyle. Population-based assessment of the prevalences of cardiovascular risk factors and cardiovascular disease in an inflammation-prone African population, including electrocardiography and ankle-arm index measurement. Comparison with known prevalences in American and European societies. METHODOLOGY/PRINCIPAL FINDINGS: Traditional population in rural Ghana, characterised by adverse environmental conditions and a high infectious load. Population-based sample of 924 individuals aged 50 years and older. Median values for cardiovascular risk factors, including waist circumference, BMI, blood pressure, and markers of glucose and lipid metabolism and inflammation. Prevalence of myocardial infarction detected by electrocardiography and prevalence of peripheral arterial disease detected by ankle-arm index. When compared to western societies, we found the Ghanaians to have more proinflammatory profiles and less cardiovascular risk factors, including obesity, dysglycaemia, dyslipidaemia, and hypertension. Prevalences of cardiovascular disease were also lower. Definite myocardial infarction was present in 1.2% (95%CI: 0.6 to 2.4%). Peripheral arterial disease was present in 2.8% (95%CI: 1.9 to 4.1%). CONCLUSIONS/SIGNIFICANCE: Taken together, our data indicate that for the pathogenesis of cardiovascular disease inflammatory processes alone do not suffice and additional factors, probably lifestyle-related, are mandatory.
Resumo:
We performed a case-control study to determine the association of BK plasma viremia with hemorrhagic cystitis (HC) in hematopoietic cell transplant (HCT) recipients. Thirty cases of HC (14 of which occurred after platelet engraftment with documented BK viruria [BK-HC]) were compared with matched controls. Weekly plasma samples were tested for BK virus DNA by polymerase chain reaction (PCR). BK viremia detected before or during the disease was independently associated with HC (adjusted odds ratio = 30, P < .001); BK viremia was even important before clinical symptoms of HC occurred (odds ratio = 11, P < .001). Cases of HC and BK-HC had a significantly higher peak of BK plasma viral load than controls. BK virus was detected by in situ hybridization in bladder biopsies of 2 cases with severe HC and long-lasting BK viremia. BK virus seems to play a role in the development of HC and quantitative detection of BK DNA in plasma appears to be a marker of BK virus disease in HCT recipients.
Resumo:
Aliment Pharmacol Ther 2011; 33: 1162-1172 SUMMARY: Background Hepatitis C virus (HCV) is a major cause of chronic liver disease, cirrhosis and hepatocellular carcinoma and the identification of the predictors of response to antiviral therapy is an important clinical issue. Aim To determine the independent contribution of factors including IL28B polymorphisms, IFN-gamma inducible protein-10 (IP-10) levels and the homeostasis model assessment of insulin resistance (HOMA-IR) score in predicting response to therapy in chronic hepatitis C (CHC). Methods Multivariate analysis of factors predicting rapid (RVR) and sustained (SVR) virological response in 280 consecutive, treatment-naive CHC patients treated with peginterferon alpha and ribavirin in a prospective multicentre study. Results Independent predictors of RVR were HCV RNA <400 000 IU/mL (OR 11.37; 95% CI 3.03-42.6), rs12980275 AA (OR 7.09; 1.97-25.56) and IP-10 (OR 0.04; 0.003-0.56) in HCV genotype 1 patients and lower baseline γ-glutamyl-transferase levels (OR = 0.02; 0.0009-0.31) in HCV genotype 3 patients. Independent predictors of SVR were rs12980275 AA (OR 9.68; 3.44-27.18), age <40 years (OR = 4.79; 1.50-15.34) and HCV RNA <400 000 IU/mL (OR 2.74; 1.03-7.27) in HCV genotype 1 patients and rs12980275 AA (OR = 6.26; 1.98-19.74) and age <40 years (OR 5.37; 1.54-18.75) in the 88 HCV genotype 1 patients without a RVR. RVR was by itself predictive of SVR in HCV genotype 1 patients (OR 33.0; 4.06-268.32) and the only independent predictor of SVR in HCV genotype 2 (OR 9.0, 1.72-46.99) or genotype 3 patients (OR 7.8, 1.43-42.67). Conclusions In HCV genotype 1 patients, IL28B polymorphisms, HCV RNA load and IP-10 independently predict RVR. The combination of IL28B polymorphisms, HCV RNA level and age may yield more accurate pre-treatment prediction of SVR. HOMA-IR score is not associated with viral response.
Resumo:
Vertebroplasty and kyphoplasty have been reported to alter the mechanical behavior of the treated and adjacent-level segments, and have been suggested to increase the risk for adjacent-level fractures. The intervertebral disc (IVD) plays an important role in the mechanical behavior of vertebral motion segments. Comparisons between normal and degenerative IVD motion segments following cement augmentation have yet to be reported. A microstructural finite element model of a degenerative IVD motion segment was constructed from micro-CT images. Microdamage within the vertebral body trabecular structure was used to simulate a slightly (I = 83.5% of intact stiffness), moderately (II = 57.8% of intact stiffness), and severely (III = 16.0% of intact stiffness) damaged motion segment. Six variable geometry single-segment cement repair strategies (models A-F) were studied at each damage level (I-III). IVD and bone stresses, and motion segment stiffness, were compared with the intact and baseline damage models (untreated), as well as, previous findings using normal IVD models with the same repair strategies. Overall, small differences were observed in motion segment stiffness and average stresses between the degenerative and normal disc repair models. We did however observe a reduction in endplate bulge and a redistribution in the microstructural tissue level stresses across both endplates and in the treated segment following early stage IVD degeneration. The cement augmentation strategy placing bone cement along the periphery of the vertebra (model E) proved to be the most advantageous in treating the degenerative IVD models by showing larger reductions in the average bone stresses (vertebral and endplate) as compared to the normal IVD models. Furthermore, only this repair strategy, and the complete cement fill strategy (model F), were able to restore the slightly damaged (I) motion segment stiffness above pre-damaged (intact) levels. Early stage IVD degeneration does not have an appreciable effect in motion segment stiffness and average stresses in the treated and adjacent-level segments following vertebroplasty and kyphoplasty. Placing bone cement in the periphery of the damaged vertebra in a degenerative IVD motion segment, minimizes load transfer, and may reduce the likelihood of adjacent-level fractures.