944 resultados para UV-lack


Relevância:

20.00% 20.00%

Publicador:

Resumo:

由于到达地球表面的紫外线B辐射不断加强,生物生长受到了威胁。UV-B的增强改变了生物体赖以生存的环境,影响了藻类生物生长,抑制了其光合作用。以BG11为培养基,在室内培养的条件是光照强度为60μmol·m-2s-(1昼夜比为12h∶12h),温度为26℃,研究了一氧化氮(NO)在增强UV-B(强度为0.2J·m-2s-1)辐射下的对小球藻的作用。测定了小球藻的硝酸还原酶(NR,nitrate reductase)、亚硝酸还原酶(NiR,nitrite reductase)、谷胱甘肽还原酶(GS,gluta

Relevância:

20.00% 20.00%

Publicador:

Resumo:

采用自制玻璃负载TiO2薄膜,研究了UV-V is/TiO2以及UV/TiO2/H2O2体系对2种酞酸酯DBP和DEHP的光催化降解情况。研究结果表明,TiO2在暗处对酞酸酯没有降解作用;UV/TiO2体系能有效光降解DBP和DEHP,TiO2具有明显的光催化作用,增强因子分别为fDBP=2.06,fDEHP=1.53;在一定浓度范围内DBP在UV/TiO2体系中的降解速率与其初始浓度成负一级动力学关系;UV/TiO2/H2O2体系对DBP的光降解能力远大于UV/TiO2和UV/H2O2体系,H2O2能显

Relevância:

20.00% 20.00%

Publicador:

Resumo:

研究了邻苯二甲酸二丁酯(DBP)在UV/H2O2体系中的光降解。结果表明:DBP在UV/H2O2体系中能很好地降解,且其光降解速率大于在单一UV辐照下的光降解速率;在pH为中性条件下DBP的光降解速率最快,而在强酸性或碱性条件下DBP的光降解速率均较低;在一定H2O2浓度范围内,DBP的光降解速率随c(H2O2)的升高而增大,但当c(H2O2)过高时,其对.OH自由基的清除作用使DBP的光降解速率减慢。DBP的光降解速率随其初始质量浓度的增大而降低;在实验质量浓度范围内,DBP的光降解速率常数近似与其初始

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To improve the force output of microactuators, this work focuses on actuators driven by pressurized gasses or liquids. Despite their well known ability to generate high actuation forces, hydraulic actuators remain uncommon in microsystems. This is both due to the difficulty of fabricating these microactuators with the existing micromachining processes and to the lack of adequate microseals. This paper describes how to overcome these limitations with a combination of anisotropic micromachining, UV definable polymers and low temperature bonding. The functionality of these actuators is proven by extensive measurements which showed that actuation forces of 0.1 N can be achieved for actuators with an active cross-section of 0.15 mm2. This is an order of magnitude higher than what is reported for classic MEMS actuators of similar size.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Graphene grown by Chemical Vapor Deposition (CVD) on nickel subsrate is oxidized by means of oxygen plasma and UV/Ozone treatments to introduce bandgap opening in graphene. The degree of band gap opening is proportional to the degree of oxidation on the graphene. This result is analyzed and confirmed by Scanning Tunnelling Microscopy/Spectroscopy and Raman spectroscopy measurements. Compared to conventional wet-oxidation methods, oxygen plasma and UV/Ozone treatments do not require harsh chemicals to perform, allow faster oxidation rates, and enable site-specific oxidation. These features make oxygen plasma and UV/Ozone treatments ideal candidates to be implemented in high-throughput fabrication of graphene-based microelectronics. © 2011 Materials Research Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon nanotubes (CNTs) are promising for microsystems applications, yet few techniques effectively enable integration of CNTs with precise control of placement and alignment of the CNTs at sufficiently high densities necessary for compelling mechanical or electrical performance. This paper explores new methods for scalable integration of dense, horizontally aligned (HA) CNTs with patterned electrodes. Our technique involves the synthesis of vertically aligned (VA) CNTs directly on a conductive underlayer and subsequent mechanical transformation into HA-CNTs, thus making electrical contact between two electrodes. We compare elasto-capillary folding and mechanical rolling as methods for transforming VA-CNTs, which lead to distinctly different HA-CNT morphologies and potentially impact material and device properties. As an example application of this novel CNT morphology, we investigate fabrication of electrically addressable CNT-C60 hybrid thin films that we previously demonstrated as photodetectors. We synthesize these assemblies by crystallizing C60 from dispersion on HA-CNT thin-film scaffoldings. HA-CNTs fabricated by rolling result in relatively low packing density, so C 60 crystals embed inside the HA-CNT matrix during synthesis. On the other hand, C60 crystallization is restricted to near the surface of HA-CNT films made by the elasto-capillary process. © 2013 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

UV-B-induced oxidative damage and the protective effect of exopolysaccharides (EPS) in Microcoleus vaginatus, a cyanobacterium isolated from desert crust, were investigated. After being irradiated with UV-B radiation, photosynthetic activity (Fv/Fm), cellular total carbohydrates, EPS and sucrose production of irradiated cells decreased, while reducing sugars, reactive oxygen species (ROS) generation, malondialdehyde (MDA) production and DNA strand breaks increased significantly. However, when pretreated with 100 mg/L exogenous EPS, EPS production in the culture medium of UV-B stressed cells decreased significantly; Fv/Fm, cellular total carbohydrates, reducing sugars and sucrose synthase (SS) activity of irradiated cells increased significantly, while ROS generation, MDA production and DNA strand breaks of irradiated cells decreased significantly. The results suggested that EPS exhibited a significant protective effect on DNA strand breaks and lipid peroxidation by effectively eliminating ROS induced by UV-B radiation in M. vaginatus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous studies on diurnal photosynthesis of macroalgal species have shown that at similar levels of photosynthetically active radiation (PAR, 400-700nm) the photosynthetic rate is lower in the afternoon than in the morning. However, the impacts of solar ultraviolet radiation (UVR, 280-400nm) have been little considered. We investigated the diurnal photosynthetic behaviour of the economically significant red alga Gracilaria lemaneiformis in the absence or presence of UV-A+B or UV-B with a flow-through system. While UV-A and UV-B, respectively, inhibited noontime Pmax by 22% and 14% on the sunny days, UV-A during sunrise (PAR below about 50Wm-2) increased the net photosynthesis by about 8% when compared with PAR alone. UV-A + PAR also resulted in higher apparent photosynthetic efficiency in the morning than in the afternoon period than PAR alone. Nevertheless, integrated daytime photosynthetic production under solar PAR alone was higher than with either PAR + UV-A+B or PAR + UV-A. Relative growth rate in the long term (9 days) matched the integrated photosynthetic production in that UV-A led to 9-15% and UV-B to 19-22% reduction, respectively. UV-absorbing compounds were found to be higher in the thalli exposed to PAR+UV-A+B than under PAR alone, reflecting a protective response to UVR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The minor variant of the economically important cyanobacterium, Arthrospira platensis, usually appears in commercial production ponds under solar radiation. However, how sensitive the minor variant to solar UVR and whether its occurrence relates to the solar exposures are not known. We investigated the photochemical efficiency of PSII and growth rate of D-0083 strain and its minor variant in semi-continuous cultures under PAR (400-700 nm) alone, PAR + UV-A (320-400 nm) and PAR + UV-A + UV-B (280-700 nm) of solar radiation. The effective quantum yield of D-0083 at 14:00 p.m. decreased by about 86% under PAR, 87% under PAR + UV-A and 92% under PAR + UV-A + UV-B (280-315 nm), respectively. That of the minor variant was reduced by 93% under PAR and to undetectable values in the presence of UV-A or UV-A + UV-B. Diurnal change of the yield showed constant pattern during long-term (10 days) exposures, high in the early morning and late afternoon but the lowest at noontime in both strains, with the UVR-related inhibition being always higher in the variant than D-0083. During the long-term exposures, cells of D-0083 acclimated faster to solar UV radiation and showed paralleled growth rates among the treatments with or without UVR at the end of the experiment; however, growth of the minor variant was significantly reduced by UV-A and UV-B throughout the period. Comparing to the major strain D-0083, the minor variant was more sensitive to UVR in terms of its growth, quantum yield and acclimation to solar radiation. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

UV radiation is one of many harmful factors found in space that are detrimental to organisms on earth in space exploration. In the present work, we examined the role of antioxidant system in Nostoc sphaeroides Kutz (Cyanobacterium) and the effects of exogenously applied antioxidant molecules on its photosynthetic rate under UV-B radiation. It was found that UV-B radiation promoted the activity of antioxidant system to protect photosystem 11 (PSII) and exogenously applied antioxidant: sodium nitroprusside (SNP) and N-acetylcysteine (NAC) had an obvious protection on PSII activity under UV-B radiation. The activity of superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6), peroxidase (POD, EC 1.11.1.7) and content of NIDA (malondialdehyde) and ASC (ascorbate) were improved by 0.5 mM and 1 mM SNP, but 0.1 mM SNP decreased the activity of antioxidant system. Addition of exogenous NAC decreased the activity of SOD, POD, CAT and the content MDA and ASC. In contrast, exogenously applied NAC increased GSH content. The results suggest that exogenous SNP and NAC may protect algae by different mechanisms: SNP may play double roles as both sources of reactive free radicals as well as ROS scavengers in mediating the protective role of PSII on algae under UV-B radiation. On the other hand, NAC functions as an antioxidant or precursor of glutathione, which could protect PSII directly from UV-B radiation. (c) 2007 COSPAR, Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, we found that UV-B radiation decreased photosynthetic activity and boosted lipid peroxidation of desert Nostoc sp., and exogenous chemicals (ascorbate acid (ASC), N-acetylcysteine (NAC), and sodium nitroprusside (SNP)) had obvious protective effects on photosynthesis and membranes under UV-B radiation. High-concentration SNP boosted the activities of antioxidant enzymes, but low-concentration SNP reduced the activities of antioxidant enzymes. Both NAC and ASC treatments of cells decreased activities of antioxidant enzymes. The results suggested that those chemicals possibly had different mechanisms of protection of algae cells against UV-B radiation. SNP might play double roles as a signal molecule in the formation of algae cell protection of Photosystem 11 under UV-B radiation and as a (reactive oxygen species) scavenger, while NAC and ASC might function as antioxidant reagents or precursors of other antioxidant molecules, which could protect cells directly against ROS initiated by UV-B radiation. (c) 2006 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of ultraviolet radiation (UVR 280-400 nm) on the germination of Porphyra haitanensis conchospores and on the growth and morphogenesis of the subsequent sporelings were investigated by culturing the released conchospores under natural sunlight from 29 September to 6 October 2005. Germination increased with time and was faster when UV-B was excluded using cut-off filters. There were significant negative effects of UV-B radiation on growth and cell division of sporelings, with decreases up to 18% for thallus length, between 6 and 18% for thallus width, up to 29% for thallus area, and between 6 and 14% for cell size as compared to PAR-controls. UV-A had a significant positive effect on morphogenesis, enhancing the formation of sporelings with cells dividing transversely; on the other hand, UV-B delayed the formation of such sporelings. We also tested the effects of solar UVR on the growth of P. haitanensis juveniles and found no significant effects. Our results indicate that UV-A has an important role in the germination and morphogenesis of the species, but on the other hand, sporelings of P. haitanensis are more sensitive to UV-B radiation than juveniles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photosynthesis by phytoplankton cells in aquatic environments contributes to more than 40% of the global primary production (Behrenfeld et al., 2006). Within the euphotic zone (down to 1% of surface photosynthetically active radiation [PAR]), cells are exposed not only to PAR (400-700 nm) but also to UV radiation (UVR; 280-400 nm) that can penetrate to considerable depths (Hargreaves, 2003). In contrast to PAR, which is energizing to photosynthesis, UVR is usually regarded as a stressor (Hader, 2003) and suggested to affect CO2-concentrating mechanisms in phytoplankton (Beardall et al., 2002). Solar UVR is known to reduce photosynthetic rates (Steemann Nielsen, 1964; Helbling et al., 2003), and damage cellular components such as D1 proteins (Sass et al., 1997) and DNA molecules (Buma et al., 2003). It can also decrease the growth (Villafane et al., 2003) and alter the rate of nutrient uptake (Fauchot et al., 2000) and the fatty acid composition (Goes et al., 1994) of phytoplankton. Recently, it has been found that natural levels of UVR can alter the morphology of the cyanobacterium Arthrospira (Spirulina) platensis (Wu et al., 2005b). On the other hand, positive effects of UVR, especially of UV- A (315-400 nm), have also been reported. UV- A enhances carbon fixation of phytoplankton under reduced (Nilawati et al., 1997; Barbieri et al., 2002) or fast-fluctuating (Helbling et al., 2003) solar irradiance and allows photorepair of UV- B-induced DNA damage (Buma et al., 2003). Furthermore, the presence of UV-A resulted in higher biomass production of A. platensis as compared to that under PAR alone (Wu et al., 2005a). Energy of UVR absorbed by the diatom Pseudo-nitzschia multiseries was found to cause fluorescence (Orellana et al., 2004). In addition, fluorescent pigments in corals and their algal symbiont are known to absorb UVR and play positive roles for the symbiotic photosynthesis and photoprotection (Schlichter et al., 1986; Salih et al., 2000). However, despite the positive effects that solar UVR may have on aquatic photosynthetic organisms, there is no direct evidence to what extent and howUVR per se is utilized by phytoplankton. In addition, estimations of aquatic biological production have been carried out in incubations considering only PAR (i. e. using UV-opaque vials made of glass or polycarbonate; Donk et al., 2001) without UVR being considered (Hein and Sand-Jensen, 1997; Schippers and Lurling, 2004). Here, we have found that UVR can act as an additional source of energy for photosynthesis in tropical marine phytoplankton, though it occasionally causes photoinhibition at high PAR levels. While UVR is usually thought of as damaging, our results indicate that UVR can enhance primary production of phytoplankton. Therefore, oceanic carbon fixation estimates may be underestimated by a large percentage if UVR is not taken into account.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The antibacterial drug furazolidone belonging to the group of nitrofuran antibacterial agents has been widely used as an antibacterial and antiprotozoal feed additive for poultry, cattle, and farmed fish in China. During application a large proportion of the administered drug may reach the environment directly or via feces. Although the use of furazolidone is prohibited in numerous countries, there are indications of its illegal use. It is known that furazolidone can be rapidly metabolized to 3-amino-2-oxazolidinone (AOZ) in the body of the target organism. In this study, a total of 21 fish feed samples, including 17 commercial fish feeds from local markets in China (representing 15 different formulations) and 4 fish feeds obtained from Germany and Turkey, respectively, are analyzed to determine whether the drug is still illegally used or commercially available feeds are contaminated by this drug. High-performance liquid chromatography (HPLC) and liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) methods have been implemented to determine furazolidone and its metabolite AOZ in fish feeds containing animal protein, respectively. An efficient and convenient cleanup method for the determination of furazolidone in fish feeds is developed, and a simple cleanup method for the determination of AOZ is used. Method recoveries for samples used were determined as 87.7-98.3% for furazolidone at two spike levels of 2.0 and 5.0 ng g(-1) and as 95.6-102.8% for AOZ at spike levels of 0.4 and 0.8 ng g(-1). Limits of detections were 0.4 ng g(-1) for furazolidone and 0.05 ng g(-1) for AOZ. The established methods are therefore suitable for the determination of furazolidone and its metabolite AOZ in fish feeds at trace contamination levels. Using the established methods, all fish feed samples have been proved to be furazolidone negative; however, AOZ is tested in 16 of 17 fish feeds obtained from local markets in the Hubei province of China, with a positive rate as high as 94.1%.