949 resultados para U.S. Fish and Wildlife Service. Division of Law Enforcement


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Our research sought to address the extent to which the northern snakehead (Channa argus), an invasive fish species, represents a threat to the Potomac River ecosystem. The first goal of our research was to survey the perceptions and opinions of recreational anglers on the effects of the snakehead population in the Potomac River ecosystem. To determine angler perceptions, we created and administered 113 surveys from June – September 2014 at recreational boat ramps along the Potomac River. Our surveys were designed to expand information collected during previous surveys conducted by the U.S. Fish and Wildlife Service. Our results indicated recreational anglers perceive that abundances and catch rates of target species, specifically largemouth bass, have declined since snakehead became established in the river. The second goal of our research was to determine the genetic diversity and potential of the snakehead population to expand in the Potomac River. We hypothesized that the effective genetic population size would be much less than the census size of the snakehead population in the Potomac River. We collected tissue samples (fin clippings) from 79 snakehead collected in a recreational tournament held between Fort Washington and Wilson’s Landing, MD on the Potomac River and from electrofishing sampling conducted by the Maryland Department of Natural Resources in Pomonkey Creek, a tributary of the Potomac River. DNA was extracted from the tissue samples and scored for 12 microsatellite markers, which had previously been identified for Potomac River snakehead. Microsatellite allele frequency data were recorded and analyzed in the software programs GenAlEx and NeEstimator to estimate heterozygosity and effective genetic population size. Resampling simulations indicated that the number of microsatellites and the number of fish analyzed provided sufficient precision. Simulations indicated that the effective population size estimate would expect to stabilize for samples > 70 individual snakehead. Based on a sample of 79 fish scored for 12 microsatellites, we calculated an Ne of 15.3 individuals. This is substantially smaller than both the sample size and estimated population size. We conclude that genetic diversity in the snakehead population in the Potomac River is low because the population has yet to recover from a genetic bottleneck associated with a founder effect due to their recent introduction into the system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Common terns currently are listed as endangered or threatened in many states, including Illinois, Vermont, Pennsylvania, Ohio, Wisconsin, Michigan, and New York, and a species of special concern by the U.S. Fish and Wildlife Service (USFWS, 2002). The sole remaining nesting colony in Illinois is located at the Naval Station Great Lakes (NSGL) in Lake County where intensive management by the Illinois Department of Natural Resources has reduced nest predation and increased the number of eggs that hatch. However, the overall reproductive success (the number of young successfully reaching independence) has not improved. Observations of gross deformities in hatchlings (i.e. compromised feather development and cross-bill), lethargic behavior of young birds, and lesions, suggested the influence of environmental contaminants (Jablonski et al., 2005). I investigated if there were significant levels of environmental contaminants in eggs and nestlings of common terns. While there were minimal concentration of selenium, mercury, lead, and cadmium, there were large concentration of polychlorinated biphenyls (PCBs) in both the eggs and nestlings. The greater amounts of PCBs in older chicks than younger chicks suggest local contamination. In order to potentially manage the factors responsible for exposing the terns to PCBs I investigated the pathway by which PCBs were exposed to terns. The two most likely biological pathways as determined by research on Great Lake fishes were investigated. The first pathway is through atmospheric deposition of PCBs and resuspension of PCB-ladel sediment which are subsequently acquired by filter-feeding fish (e.g. alewives, Alosa pseudoharengus) and then pelagic fish (e.g. lake trout, Salvelinus namaychus) or in this case terns. The second pathway explored was via the biodeposits of zebra mussels which are consumed by round gobies (Neogobius melanostromus) and ultimately littoral fish (e.g. small-mouthed bass, Micropterus dolomieui) or terns. Because common terns breed in near-shore sites where concentrations of zebra mussels are found, as well as forage in more pelagic environments it is possible that either or both pathways may be contributing to their PCB exposure. Field experiments and stable isotope analyses demonstrated that the most likely pathway by which terns are exposed to PCBs is via alewives, similar to how apex predators such as lake trout acquire PCBs. Biodeposits from zebra mussels do not appear to be a significant factor in PCB accumulation in terns. The impact of PCB exposure on birds can vary widely, however in this situation we choise to investigate one specific behavior often affected by PCB exposure, parental attentiveness. PCBs are known to cause endocrine disruption which ultimately results in reduced brooding of young and incubation of eggs. I used temperature sensors to quantify nest temperatures and parental attentiveness during incubation. High concentrations of PCBs in our study population appear to be leading to poor parental attentiveness, and extended periods of absence during incubation and brooding, ultimately leading to poor reproductive success. Common terns are perilously close to being extirpated in Illinois and management of PCB exposure will be difficult. I propose that additional testing should be conducted to locate a site with less PCB contamination and then to move the tern colony to this location, possibly using social cues as has been done with other tern species in Illinois. PCBs are having a profound impact on common tern populations in Illinois and without moving the colony it is likely that the population will continue to decline.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

v. 62 (1972)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

v. 64 (1974)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

v. 61 (1971)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

v. 56 (1965)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

v. 65 (1975)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

v. 68 (1978)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

v. 47 (1956)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

v. 60 (1970)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

v. 48 (1957)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

v. 51 (1960)