958 resultados para Two-way Pseudo-testcross
Resumo:
This study tested if dentin adhesion is affected by Er:YAG laser. Ninety dentin disks were divided in groups (n=10): G1, control; G2, Er:YAG laser 150 mJ, 90 degrees contact, 38.8 J/cm(2); G3, Er:YAG laser 70 mJ, 90 degrees contact, 18.1 J/cm(2); G4, Er:YAG laser 150 mJ, 90 degrees non-contact, 1.44 J/cm(2); G5, Er:YAG laser 70 mJ, 90 degrees non-contact, 0.67 J/cm(2); G6, Er:YAG laser 150 mJ, 45 degrees contact, 37.5 J/cm(2); G7, Er:YAG laser 70 mJ, 45 degrees contact, 17.5 J/cm(2); G8, Er:YAG laser 150 mJ, 45 degrees non-contact, 1.55 J/cm(2); and G9, Er:YAG laser 70 mJ, 45 degrees non-contact, 0.72 J/cm(2). Bonding procedures were carried out and the micro-shear-bond strength (MSBS) test was performed. The adhesive surfaces were analyzed under SEM. Two-way ANOVA and multiple comparison tests revealed that MSBS was significantly influenced by the laser irradiation (p < 0.05). Mean values (MPa) of the MSBS test were: G1 (44.97 +/- 6.36), G2 (23.83 +/- 2.46), G3 (30.26 +/- 2.57), G4 (35.29 +/- 3.74), G5 (41.90 +/- 4.95), G6 (27.48 +/- 2.11), G7 (34.61 +/- 2.91), G8 (37.16 +/- 1.96), and G9 (41.74 +/- 1.60). It was concluded that the Er:YAG laser can constitute an alternative tool for dentin treatment before bonding procedures.
Resumo:
Objectives: The aims of the present study were to investigate whether irradiation with a CO(2) laser could prevent surface softening (i) in sound and (ii) in already softened enamel in vitro. Methods: 130 human enamel samples were obtained and polished with silicon carbide papers. They were divided into 10 groups (n = 13) receiving 5 different surface treatments: laser irradiation (L), fluoride (AmF/NaF gel) application (F), laser prior to fluoride (LF), fluoride prior to laser (FL), non-treated control (C); and submitted to 2 different procedures: half of the groups was acid-softened before surface treatment and the other half after. Immersion in 1% citric acid was the acid challenge. Surface microhardness (SMH) was measured at baseline, after softening and after treatment. Additionally, fluoride uptake in the enamel was quantified. The data were statistically analysed by two-way repeated measurements ANOVA and post hoc comparisons at 5% significance level. Results: When softening was performed either before or after laser treatment, the L group presented at the end of the experiments SMH means that were not significantly different from baseline (p = 0.8432, p = 0.4620). Treatment after softening resulted for all laser groups in statistically significant increase in SMH means as compared to values after softening (p < 0.0001). Enamel fluoride uptake was significantly higher for combined laser-fluoride treatment than in control (p < 0.0001). Conclusion: Irradiation of dental enamel with a CO(2) laser at 0.3J/cm(2) (5 mu s, 226 Hz) not only significantly decreased erosive mineral loss (97%) but also rehardened previously softened enamel in vitro. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Objectives: The aim of this study was to test the effect of adhesive temperature on the bond strength to dentin (mu TBS) and silver nitrate uptake (SNU) of an ethanol/water (Adper Single Bond 2 [SB]) and an acetone-based (Prime&Bond 2.1 [PB]) etch-and-rinse adhesive system. Methods: The bottles of each adhesive were kept in various temperatures (5 degrees C, 20 degrees C, 37 degrees C and 50 degrees C) for 1 h previously to its application in the occlusal demineralized dentin of 40 molars. Bonded sticks (0.8 mm(2)) were tested in tension (0.5 mm/min) immediately (IM) or after 6 months (6 M) of water storage. Two bonded sticks from each hemi-tooth were immersed in silver nitrate and analyzed by SEM. Data were analyzed by two-way repeated measures ANOVA and Tukey`s test (alpha = 0.05). Results: No significant difference in mu TBS was detected for both adhesives at 5 degrees C and 20 degrees C. The highest bond strength for PB was observed in the 37 degrees C group while for SB it was in the 50 degrees C. Significant reductions of bond strengths were observed for PB at 37 degrees C and SB at 50 degrees C after 6 M of water storage. Silver nitrate deposition was seen in all hybrid layers, irrespective of the group. Lower silver nitrate deposition (water trees) in the adhesive layer was seen for PB and SB at higher temperatures. Conclusions: The heating or refrigeration of the adhesives did not improve their resin-dentin bond resistance to water degradation over time. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Objectives: This study evaluated the immediate and 6-month resin-dentin mu-bond strength (mu TBS) of one-step self-etch systems (Adper Prompt L-Pop [AD] 3M ESPE; Xeno III [XE] Dentsply De Trey; iBond [iB] Heraeus Kulzer) under different application modes. Materials and methods: Dentin oclusal surfaces were exposed by grinding with 600-grit SiC paper. The adhesives were applied according to the manufacturer`s directions [MD], or with double application of the adhesive layer [DA] or following the manufacturer`s directions plus a hydrophobic resin layer coating [HL]. After applying the adhesive resins, composite crowns were built up incrementally. After 24-h water storage, the specimens were serially sectioned in ""x"" and ""y"" directions to obtain bonded sticks of about 0.8 mm 2 to be tested immediately [IM] or after 6 months of water storage [6M] at a crosshead speed of 0.5 mm/min. The data from each adhesive was analyzed by a two-way repeated measures ANOVA (mode of application vs. storage time) and Tukey`s test (alpha = 0.05). Results: The adhesives performed differently according to the application mode. The DA and HL either improved the immediate performance of the adhesive or did not differ from the MD. The resin-dentin bond strength values observed after 6 months were higher when a hydrophobic resin coat was used than compared to those values observed under the manufacturer`s directions. Conclusions: The double application of one-step self-etch system can be safety performed however the application of an additional hydrophobic resin layer can improve the immediate resin-dentin bonds and reduce the degradation of resin bonds over time. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Objectives. To examine the effect of prolonged application time on the early and 3-year resin-dentin microtensile bond strength. Methods. Water/ethanol (Single Bond [SB]) and acetone-based systems (One Step [OS]) were employed. A flat superficial dentin surface was exposed in third human molars by wet abrasion. The adhesives were applied to a delimited area of 52 mm(2) on wet surfaces, for 40, 90, 150 and 300s. Four teeth were assigned for each experimental condition. Composite build-ups were constructed incrementally After water storage at 37 degrees C for 24 h, teeth were sectioned to obtain sticks with cross-sectional areas of 0.8 mm(2) to be tested in tension (0.5 mm/min) either immediately (IM) or after 3 years (3Y) of water storage. The microtensile bond strength (mu TBS) values were analyzed by two way repeated measures ANOVA and Tukey`s test (alpha = 0.05). Results. The 90- and 150-s groups achieved the highest IM mu TBS for OS (p < 0.01). For SB, the highest IM mu TBS values were observed after 300-s application (p < 0.01). Significant decreases in mu TBS were observed for OS in the 40- and 90-s groups after 3Y, except for the 150-s group. With regard to SB, after 3Y significant drops in mu TBS values were observed for the 40- and 150-s groups, except for the 300-s group. Significance. Prolonged application times can increase the immediate LTBS of two-step etch-and-rinse adhesive systems and make the adhesive layer more stable over time. (c) 2007 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Dentin bonding performed with hydrophobic resins using ethanol-wet bonding should be less susceptible to degradation but this hypothesis has never been validated. Objectives. This in vitro study evaluated stability of resin-dentin bonds created with an experimental three-step BisGMA/TEGDMA hydrophobic adhesive or a three-step hydrophilic adhesive after one year of accelerated aging in artificial saliva. Methods. Flat surfaces in mid-coronal dentin were obtained from 45 sound human molars and randomly divided into three groups (n = 15): an experimental three-step BisGMA/TEGDMA hydrophobic adhesive applied to ethanol (ethanol-wet bonding-GI) or water-saturated dentin (water-wet bonding-GII) and Adper Scotchbond Multi-Purpose [MP-GIII] applied, according to manufacturer instructions, to water-saturated dentin. Resin composite crowns were incrementally formed and light-cured to approximately 5 mm in height. Bonded specimens were stored in artificial saliva at 37 degrees C for 24h and sectioned into sticks. They were subjected to microtensile bond test and TEM analysis immediately and after one year. Data were analyzed with two-way ANOVA and Tukey tests. Results. MP exhibited significant reduction in microtensile bond strength after aging (24 h: 40.6 +/- 2.5(a); one year: 27.5 +/- 3.3(b); in MPa). Hybrid layer degradation was evident in all specimens examined by TEM. The hydrophobic adhesive with ethanol-wet bonding preserved bond strength (24 h: 43.7 +/- 7.4(a); one year: 39.8 +/- 2.7(a)) and hybrid layer integrity, with the latter demonstrating intact collagen fibrils and wide interfibrillar spaces. Significance. Coaxing hydrophobic resins into acid-etched dentin using ethanol-wet bonding preserves resin-dentin bond integrity without the adjunctive use of MMPs inhibitors and warrants further biocompatibility and patient safety`s studies and clinical testing. (C) 2009 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Purpose: To evaluate the effect of light guide distance and the different photoactivation methods on the degree of conversion (DC) and microleakage of a composite. Methods and Materials: Three photoactivation protocols (600mW/cm(2) x 40 seconds; 400 mW/cm(2) x 60 seconds or 200 mW/cm(2) x 20 seconds, followed by 500 mW/cm(2) X 40 seconds) and three distances from the light source (0, 3 or 7 mm) were tested. Cylindrical specimens (5 nun diameter; 2 mm tall; n=3) were prepared for the DC test (FT-Raman). Class V cavities were made in 90 bovine incisors to conduct the microleakage test. The specimens were conditioned for 15 seconds with phosphoric acid (37%), followed by application of the adhesive system Prime & Bond NT (Dentsply/Caulk). The preparations were restored in bulk. The specimens were stored for 24 hours in distilled water (37 degrees C) before being submitted to the silvernitrate microleakage protocol. The restorations were sectioned and analyzed under 25x magnification. Results: Statistical analyses (two-way ANOVAs and Tukey test, alpha=0.05) found significance only for the factor distance (p=0.015) at the top of the composite for the DC test. Conversion was statistically lower for the 7 mm groups compared to the 0 and 3 mm groups, which were equivalent to each other. At the bottom of the specimens, none of the factors or interactions was significant (p<0.05). The Kruskal-Wallis test showed that, in general, the soft-start method led to lower microleakage scores when compared to the continuous modes, mainly when associated with a distancing of 7 mm (p<0.01). With the exception of specimens irradiated with 400mW/cm(2) that did not demonstrate variations on scores for the distances tested, higher microleakage was observed for shorter distances from the light source. Conclusions: Soft-start methods may reduce microleakage when the light guide distancing provides a low level of irradiance, which also causes a discrete reduction in the DC.
Resumo:
This study evaluated the effect of the C-factor and dentin preparation method (DPM) in the bond strength (BS) of a mild self-etch adhesive; the study also observed the SEM superficial aspects of the corresponding smear layer. For purposes of this study, 25 molars (n=5) were used in a bond strength test. The molars were divided into two parts (buccal and lingual): one part received a Class V cavity (C-factor=3) and the other received a flat surface (C-factor=0) with the same bur type (coarse diamond or carbide bur and fine diamond or carbide bur), both within the same dentin depth. Five teeth were prepared with wet 60-grit and 600-grit SiC papers. After restoration with Clearfil SE Bond, microtensile beans (0.8 mm(2)) were prepared and tested after 24 hours in a universal testing machine (0.5 mm/minute). An additional two teeth for each DPM were prepared for SEM evaluation of the smear layer superficial aspects. The BS values were submitted to one-way ANOVA, considering only the DPM (flat surfaces) and two-way ANOVA (C-Factor x DPM, considering only burs) with p=0.05. Although the DPM in the flat surfaces was not significant, the standard deviations of carbide bur-prepared specimens were markedly lower. The BS was significantly lower in cavities. The fine carbide bur presented the most favorable smear layer aspect. It was concluded that different dentin preparation methods could not prevent the adverse effect in bond strength of a high C-factor. A coarse cut carbide bur should be avoided prior to a mild self-etch adhesive, because it adversely affected bond strength. In contrast, a fine cut carbide bur provided the best combination: high bond strength with low variability, which suggests a more reliable bond strength performance.
Resumo:
Purpose: The objective of this study was to verify the influence of test environment on the flexural strength of dental porcelains with distinct microstructures. Material and Methods: Disk-shaped specimens from three dental porcelains with distinct leucite content (VM: zero; CE: 12; NS: 22 vol%) were manufactured and tested for biaxial flexural strength in air and immersed in artificial saliva. The results were analyzed by means of two-way ANOVA and Tukey`s test (alpha = 0.05). Results: The flexural strength (MPa) obtained for ambient air and artificial saliva environments, respectively, were: 110.0 +/- 16.0 and 81.5 +/- 10.8 for VM; 51.9 +/- 4.0 and 42.0 +/- 4.7 for CE; 72.0 +/- 11.5 and 63.6 +/- 5.8 for NS. A numerical decrease in the mean flexural strength was observed for all groups when specimens were tested under artificial saliva; however, the difference was only statistically significant for VM. Conclusions: The results indicate that the effect of water immersion on the flexural strength of dental porcelains varies according to their leucite content, as only the material without leucite in its microstructure (VM) showed significant strength degradation when tested under water.
Resumo:
Background: Matrix metalloproteinase (MMP) inhibitors reduce dentine erosion. This in vitro study evaluated the effect of the supplementation of soft drinks with green tea extract, a natural inhibitor of MMPs, on their erosive potential against dentine. Methods: For each drink tested (Coca-Cola (TM), Kuat (TM) guarana, Sprite (TM) and light Coca-Cola (TM)), 40 dentine specimens were divided into two subgroups differing with respect to supplementation with green tea extract at 1.2% (OM24 (R), 100% Camellia sinensis leaf extract, containing 30 +/- 3% of catechin; Omnimedica, Switzerland) or not (control). Specimens were subjected to four pH cycles, alternating de-and remineralization in one day. For each cycle, samples were immersed in pure or supplemented drink (10 minutes, 30 mL per block) and in artificial saliva (60 minutes, 30 mL per block) at 37 degrees C, under agitation. Dentine alterations were determined by profilometry (mu m). Data were analysed by two-way ANOVA and Bonferroni`s test (p < 0.05). Results: A significant difference was observed among the drinks tested with Sprite (TM) leading to the highest surface loss and light Coca-Cola (TM) to the lowest. Supplementation with green tea extract reduced the surface loss by 15% to 40% but the difference was significant for Coca-Cola (TM) only. Conclusions: Supplementation of soft drinks with green tea extract might be a viable alternative to reduce their erosive potential against dentine.
Resumo:
A/J and 129P3/J mouse strains have different susceptibilities to dental fluorosis, due to their genetic backgrounds. This study tested whether these differences are due to variations in water intake and/or F metabolism. A/J (susceptible to dental fluorosis) and 129P3/J mice (resistant) received drinking water containing 0, 10, or 50 ppm F. Weekly F intake, excretion and retention, and terminal plasma and femur F levels were determined. Dental fluorosis was evaluated clinically and by quantitative fluorescence (QF). Data were tested by two-way ANOVA. Although F intakes by the strains were similar, excretion by A/J mice was significantly higher due to greater urinary F excretion, which resulted in lower plasma and femur F levels. Compared with 129P3/J mice given 50 ppm F, significantly higher QF scores were recorded for A/J mice. In conclusion, these strains differ with respect to several features of F metabolism, and amelogenesis in the 129P3/J strain seems to be unaffected by high F exposure.
Resumo:
Objectives: To evaluate the influence of two surface sealants (BisCover/Single Bond) and three application techniques (unsealed/conventional/co-polymerization) on the roughness of two composites (Filtek Z250/Z350) after the toothbrushing test. Methods: Seventy-two rectangular specimens (5 mm x 10 mm x 3 mm) were fabricated and assigned into 12 groups (n = 6). Each sample was subjected to three random roughness readings at baseline, after 100,000 (intermediate), and 200,000 (final) toothbrushing strokes. Roughness (R) at each stage was obtained by the arithmetic mean of the reading of each specimen. Sealant removal was qualitatively examined (optical microscope) and classified into scores (0-3). Data were analyzed by Student`s paired t-test, two-way ANOVA/Tukey`s test, and by Wilcoxon, Kruskal-Wallis and Miller`s test (alpha = 0.05). Results: Z250 groups at baseline did not differ statistically from each other. Unsealed Z350 at baseline had lower R values. All the unsealed groups presented gradual decrease in R from baseline to final brushing. From baseline to the inter-mediate stage, Z250 co-polymerized groups presented a significant reduction in R (score 3). Conventionally sealed groups had no significant changes in R (scores 2-0.8). From baseline to the intermediate stage, the conventionally sealed Z350 Single Bond group had an increase in R (score 1.5). In the final stage, all the conventionally sealed groups presented a reduction in R (scores 0.7-0). Co-polymerized Single Bond groups had a significant reduction in R (scores 2.5-2.7), and co-polymerized BisCover groups an increase in R (scores 2.8-3). Conclusions: At any brushing stage, sealed composites presented superior performance when compared with unsealed composites. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Objective: The aim of this in vitro study was to analyze the effect of glass-ionomer cement as a liner on the dentin/resin adhesive interface of lateral walls of occlusal restorations after thermocycling. Materials and Methods: Occlusal cavities were prepared in 60 human molars, divided into six groups: no liner (1 and 4); glass-ionomer cement (GIC, Ketac Molar Easymix, 3M ESPE) (2 and 5); and resin-modified glass-ionomer cement (RMGIC, Vitrebond, 3M ESPE) (3 and 6). Resin composite (Filtek Z250, 3M ESPE) was placed after application of an adhesive system (Adper Single Bond 2, 3M ESPE) that was mixed with a fluorescent reagent (Rhodamine B) to allow confocal microscopy analysis. Specimens of groups 4, 5 and 6 were thermocycled (5 degrees C-55 degrees C) with a dwell time of 30 seconds for 5000 cycles. After this period, teeth were sectioned in approximately 0.8-mm slices. One slice of each tooth was randomly selected for confocal microscopy analysis. The other slices were sectioned into 0.8 nun x 0.8 mm beams, which were submitted to microtensile testing (MPa). Data were analyzed using two-way ANOVA and Tukey test (p < 0.05). Results: There was no detectedstatistical difference on bond strength among groups (alpha < 0.05). Confocal microscopy analysis showed a higher mean gap size in group 4(12.5 mu m) and a higher percentage of marginal gaps in the thermocycled groups. The RNIGIC liner groups showed the lowest percentage of marginal gaps. Conclusions: Lining with RMGIC resulted in less gap formation at the dentin/resin adhesive interface after artificial aging. RMGIC or GIC liners did not alter the microtensile bond strength of adhesive system/resin composite to dentin on the lateral walls of Class I restorations.
Resumo:
Purpose: To evaluate the tensile bond strength of indirect composites repaired with different surface treatments and direct composites. Methods: 180 specimens were prepared with Targis, belleGlass HP and Sculpture indirect composites, light-activated and post-cured according to the manufacturers` recommendations. The specimens were stored in distilled water for 24 hours at 37 degrees C. The bonding surfaces were prepared with air abrasion, hydrofluoric acid or hydrofluoric acid followed by a neutralizing solution. All the treated surfaces were subject to the application of a silane and a bonding agent before the repair procedures with Tetric Ceram and Tetric Flow for the Targis specimens, Herculite XRV and Revolution for the belleGlass HP specimens and Sculp-It and Flow-It for Sculpture specimens. The tensile bond strength tests were carried out using a universal testing machine at cross-head speed of 0.5 mm/minute. The type of fracture was observed under a light microscope at x40 magnification. Data were analyzed by a two-way ANOVA and Tukey`s post-hoc tests (P<0.05). Results: Targis showed a statistically higher repair bond strength than belleGlass HP and Sculpture, which were not significantly different from each other. Air abrasion increased the repair bond strength of belleGlass HP and Sculpture. For Targis, all the surface treatments resulted in similar repair bond strength. The different viscosity of repair composites did not affect the repair of indirect composites. Fractured surfaces showed mostly adhesive failures, mainly with hydrofluoric acid treatment.
Resumo:
Statement of the Problem: Adhesive systems can spread differently onto a substrate and, consequently, influence bonding. Purpose: The purpose of this study was to evaluate the effect of differently oriented dentin surfaces and the regional variation of specimens on adhesive layer thickness and microtensile bond strength (MTBS). Materials and Methods: Twenty-four molars were sectioned mesiodistally to expose flat buccal and lingual halves. Standardized drop volumes of adhesive systems (Single Bond [SB] and Prime & Bond 2.1 [PB2.1]) were applied to dentin according to the manufacturer`s instructions. Teeth halves were randomly divided into groups: 1A-SB/parallel to gravity; 1B-SB/perpendicular to gravity; 2A-PB2.1/parallel to gravity; and 2B-PB2.1/perpendicular to gravity. The bonded assemblies were stored in 37 degrees C distilled water for 24 hours and then sectioned to obtain dentin sticks (0.8 mm(2)). The adhesive layer thickness was determined in a light microscope (x200), and after 48 hours the specimens were subjected to MTBS test. Data were analyzed by one-way and two-way analysis of variance and Student-Newman-Keuls tests. Results: Mean values (MPa +/- SD) of MTBS were: 39.1 +/- 12.9 (1A); 32.9 +/- 12.4 (1B); 52.9 +/- 15.2 (2A); and 52.3 +/- 16.5 (2B). The adhesive systems` thicknesses (mu m +/- SD) were: 11.2 +/- 2.9 (1A); 18.1 +/- 7.3 (1B); 4.2 +/- 1.8 (2A); and 3.9 +/- 1.3 (2B). No correlation between bond strength and adhesive layer thickness for both SB and PB2.1 (r = -0.224, p = 0.112 and r = 0.099, p = 0.491, respectively) was observed. Conclusions: The differently oriented dentin surfaces and the regional variation of specimens on the adhesive layer thickness are material-dependent. These variables do not influence the adhesive systems` bond strength to dentin. CLINICAL SIGNIFICANCE Adhesive systems have different viscosities and spread differently onto a substrate, influencing the bond strength and also the adhesive layer thickness. Adhesive thickness does not influence dentin bond strength, but it may impair adequate solvent evaporation, polymer conversion, and may also determine water sorption and adhesive degradation over time. In the literature, many studies have shown that the adhesive layer is a permeable membrane and can fail over timebecause ofits continuous plasticizing and degradation when in contact with water. Therefore, avoiding thick adhesive layers may minimize these problems and provide long-term success for adhesive restorations.