851 resultados para Transcranial magnetic stimulation
Resumo:
The performance of memory-guided saccades with two different delays (3 s and 30 s of memorisation) was studied in eight subjects. Single pulse transcranial magnetic stimulation (TMS) was applied simultaneously over the left and right dorsolateral prefrontal cortex (DLPFC) 1 s after target presentation. In both delays, stimulation significantly increased the percentage of error in amplitude of memory-guided saccades. Furthermore, the interfering effect of TMS was significantly higher in the short delay compared to that of the long delay paradigm. The results are discussed in the context of a mixed model of spatial working memory control including two components: First, serial information processing with a predominant role of the DLPFC during the early period of memorisation and, second, parallel information processing, which is independent from the DLPFC, operating during longer delays.
Resumo:
In the memory antisaccade task, subjects are instructed to look at an imaginary point precisely at the opposite side of a peripheral visual stimulus presented short time previously. To perform this task accurately, the visual vector, i.e., the distance between a central fixation point and the peripheral stimulus, must be inverted from one visual hemifield to the other. Recent data in humans and monkeys suggest that the posterior parietal cortex (PPC) might be critically involved in the process of visual vector inversion. In the present study, we investigated the temporal dynamics of visual vector inversion in the human PPC by using transcranial magnetic stimulation (TMS). In six healthy subjects, single pulse TMS was applied over the right PPC during a memory antisaccade task at four different time intervals: 100 ms, 217 ms, 333 ms, or 450 ms after target onset. The results indicate that for rightward antisaccades, i.e., when the visual target was presented in the left screen-half, TMS had a significant effect on saccade gain when applied 100 ms after target onset, but not later. For leftward antisaccades, i.e., when the visual target was presented in the right screen-half, a significant TMS effect on gain was found for the 333 ms and 450 ms conditions, but not for the earlier ones. This double dissociation of saccade gain suggests that the initial process of vector inversion can be disrupted 100 ms after onset of the visual stimulus and that TMS interfered with motor saccade planning based on an inversed vector signal at 333 ms and 450 ms after stimulus onset.
Resumo:
Larger body parts are somatotopically represented in the primary motor cortex (M1), while smaller body parts, such as the fingers, have partially overlapping representations. The principles that govern the overlapping organization of M1 remain unclear. We used transcranial magnetic stimulation (TMS) to examine the cortical encoding of thumb movements in M1 of healthy humans. We performed M1 mapping of the probability of inducing a thumb movement in a particular direction and used low intensity TMS to disturb a voluntary thumb movement in the same direction during a reaction time task. With both techniques we found spatially segregated representations of the direction of TMS-induced thumb movements, thumb flexion and extension being best separated. Furthermore, the cortical regions corresponding to activation of a thumb muscle differ, depending on whether the muscle functions as agonist or as antagonist for flexion or extension. In addition, we found in the reaction time experiment that the direction of a movement is processed in M1 before the muscles participating in it are activated. It thus appears that one of the organizing principles for the human corticospinal motor system is based on a spatially segregated representation of movement directions and that the representation of individual somatic structures, such as the hand muscles, overlap.
Resumo:
Background: The left superior temporal gyrus (STG) has been suggested to play a key role in auditory verbal hallucinations (AVH) in patients with schizophrenia. Methods: Eleven medicated subjects with schizophrenia and medication-resistant AVH and 19 healthy controls underwent perfusion magnetic resonance (MR) imaging with arterial spin labeling (ASL). Three additional repeated measurements were conducted in the patients. Patients underwent a treatment with transcranial magnetic stimulation (TMS) between the first 2 measurements. The main outcome measure was the pooled cerebral blood flow (CBF), which consisted of the regional CBF measurement in the left STG and the global CBF measurement in the whole brain. Results: Regional CBF in the left STG in patients was significantly higher compared to controls (p < 0.0001) and to the global CBF in patients (p < 0.004) at baseline. Regional CBF in the left STG remained significantly increased compared to the global CBF in patients across time (p < 0.0007), and it remained increased in patients after TMS compared to the baseline CBF in controls (p < 0.0001). After TMS, PANSS (p = 0.003) and PSYRATS (p = 0.01) scores decreased significantly in patients. Conclusions: This study demonstrated tonically increased regional CBF in the left STG in patients with schizophrenia and auditory hallucinations despite a decrease in symptoms after TMS. These findings were consistent with what has previously been termed a trait marker of AVH in schizophrenia.
Resumo:
Comment on Transcranial magnetic stimulation of Wernicke's and Right homologous sites to curtail "voices": a randomized trial. [Biol Psychiatry. 2013]
Resumo:
This study investigated the roles of the right and left dorsolateral prefrontal (rDLPFC, lDLPFC) and the medial frontal cortex (MFC) in executive functioning using a theta burst transcranial magnetic stimulation (TMS) approach. Healthy subjects solved two visual search tasks: a number search task with low cognitive demands, and a number and letter search task with high cognitive demands. To observe how subjects solved the tasks, we assessed their behavior with and without TMS using eye movements when subjects were confronted with specific executive demands. To observe executive functions, we were particularly interested in TMS-induced changes in visual exploration strategies found to be associated with good or bad performance in a control condition without TMS stimulation. TMS left processing time unchanged in both tasks. Inhibition of the rDLPFC resulted in a decrease in anticipatory fixations in the number search task, i.e., a decrease in a good strategy in this low demand task. This was paired with a decrease in stimulus fixations. Together, these results point to a role of the rDLPFC in planning and response selection. Inhibition of the lDLPFC and the MFC resulted in an increase in anticipatory fixations in the number and letter search task, i.e., an increase in the application of a good strategy in this task. We interpret these results as a compensatory strategy to account for TMS-induced deficits in attentional switching when faced with high switching demands. After inhibition of the lDLPFC, an increase in regressive fixations was found in the number and letter search task. In the context of high working memory demands, this strategy appears to support TMS-induced working memory deficits. Combining an experimental TMS approach with the recording of eye movements proved sensitive to discrete decrements of executive functions and allows pinpointing the functional organization of the frontal lobes.
Resumo:
Individuals react to violation of social norms by outgroup members differently than to transgressions of those same norms by ingroup members: namely outgroup perpetrators are punished much more harshly than ingroup perpetrators. This parochial punishment pattern has been observed and extensively studied in social psychology and behavioral economics. Despite progress in recent years, however, little is known about the neural underpinnings of this intergroup bias. Here, we demonstrate by means of transcranial magnetic stimulation (TMS) that the transient disruption of the right, but not the left temporo-parietal junction (TPJ), reduces parochial punishment in a third-party punishment paradigm with real social groups. Moreover, we show that this observed TMS effect on parochial punishment is mediated by a classical punishment motive, i.e. retaliation. Finally, our data suggests that a change in perspective-taking might be the underlying mechanism that explains the impact of right TPJ disruption on retaliation motivation and parochial punishment. These findings provide the first causal evidence that the right TPJ plays a pivotal role in the implementation of parochial behaviors.
Resumo:
Humans are noted for their capacity to over-ride self-interest in favor of normatively valued goals. We examined the neural circuitry that is causally involved in normative, fairness-related decisions by generating a temporarily diminished capacity for costly normative behavior, a 'deviant' case, through non-invasive brain stimulation (repetitive transcranial magnetic stimulation) and compared normal subjects' functional magnetic resonance imaging signals with those of the deviant subjects. When fairness and economic self-interest were in conflict, normal subjects (who make costly normative decisions at a much higher frequency) displayed significantly higher activity in, and connectivity between, the right dorsolateral prefrontal cortex (DLPFC) and the posterior ventromedial prefrontal cortex (pVMPFC). In contrast, when there was no conflict between fairness and economic self-interest, both types of subjects displayed identical neural patterns and behaved identically. These findings suggest that a parsimonious prefrontal network, the activation of right DLPFC and pVMPFC, and the connectivity between them, facilitates subjects' willingness to incur the cost of normative decisions.
Resumo:
Disruption of function of left, but not right, lateral prefrontal cortex (LPFC) with low-frequency repetitive transcranial magnetic stimulation (rTMS) increased choices of immediate rewards over larger delayed rewards. rTMS did not change choices involving only delayed rewards or valuation judgments of immediate and delayed rewards, providing causal evidence for a neural lateral-prefrontal cortex-based self-control mechanism in intertemporal choice.
Resumo:
Reputation formation pervades human social life. In fact, many people go to great lengths to acquire a good reputation, even though building a good reputation is costly in many cases. Little is known about the neural underpinnings of this important social mechanism, however. In the present study, we show that disruption of the right, but not the left, lateral prefrontal cortex (PFC) with low-frequency repetitive transcranial magnetic stimulation (rTMS) diminishes subjects' ability to build a favorable reputation. This effect occurs even though subjects' ability to behave altruistically in the absence of reputation incentives remains intact, and even though they are still able to recognize both the fairness standards necessary for acquiring and the future benefits of a good reputation. Thus, subjects with a disrupted right lateral PFC no longer seem to be able to resist the temptation to defect, even though they know that this has detrimental effects on their future reputation. This suggests an important dissociation between the knowledge about one's own best interests and the ability to act accordingly in social contexts. These results link findings on the neural underpinnings of self-control and temptation with the study of human social behavior, and they may help explain why reputation formation remains less prominent in most other species with less developed prefrontal cortices.
Resumo:
Low-frequency "off-line" repetitive transcranial magnetic stimulation (rTMS) over the course of several minutes has attained considerable attention as a research tool in cognitive neuroscience due to its ability to induce functional disruptions of brain areas. This disruptive rTMS effect is highly valuable for revealing a causal relationship between brain and behavior. However, its influence on remote interconnected areas and, more importantly, the duration of the induced neurophysiological effects, remain unknown. These aspects are critical for a study design in the context of cognitive neuroscience. In order to investigate these issues, 12 healthy male subjects underwent 8 H(2)(15)O positron emission tomography (PET) scans after application of long-train low-frequency rTMS to the right dorsolateral prefrontal cortex (DLPFC). Immediately after the stimulation train, regional cerebral blood flow (rCBF) increases were present under the stimulation site as well as in other prefrontal cortical areas, including the ventrolateral prefrontal cortex (VLPFC) ipsilateral to the stimulation site. The mean increases in rCBF returned to baseline within 9 min. The duration of this unilateral prefrontal rTMS effect on rCBF is of particular interest to those who aim to influence behavior in cognitive paradigms that use an "off-line" approach.
Resumo:
Humans restrain self-interest with moral and social values. They are the only species known to exhibit reciprocal fairness, which implies the punishment of other individuals' unfair behaviors, even if it hurts the punisher's economic self-interest. Reciprocal fairness has been demonstrated in the Ultimatum Game, where players often reject their bargaining partner's unfair offers. Despite progress in recent years, however, little is known about how the human brain limits the impact of selfish motives and implements fair behavior. Here we show that disruption of the right, but not the left, dorsolateral prefrontal cortex (DLPFC) by low-frequency repetitive transcranial magnetic stimulation substantially reduces subjects' willingness to reject their partners' intentionally unfair offers, which suggests that subjects are less able to resist the economic temptation to accept these offers. Importantly, however, subjects still judge such offers as very unfair, which indicates that the right DLPFC plays a key role in the implementation of fairness-related behaviors.
Resumo:
The frontal eye field (FEF) is known to be involved in saccade generation and visual attention control. Studies applying covert attentional orienting paradigms have shown that the right FEF is involved in attentional shifts to both the left and the right hemifield. In the current study, we aimed at examining the effects of inhibitory continuous theta burst (cTBS) transcranial magnetic stimulation over the right FEF on overt attentional orienting, as measured by a free visual exploration paradigm. In forty-two healthy subjects, free visual exploration of naturalistic pictures was tested in three conditions: (1) after cTBS over the right FEF; (2) after cTBS over a control site (vertex); and, (3) without any stimulation. The results showed that cTBS over the right FEF-but not cTBS over the vertex-triggered significant changes in the spatial distribution of the cumulative fixation duration. Compared to the group without stimulation and the group with cTBS over the vertex, cTBS over the right FEF decreased cumulative fixation duration in the left and in the right peripheral regions, and increased cumulative fixation duration in the central region. The present study supports the view that the right FEF is involved in the bilateral control of not only covert, but also of overt, peripheral visual attention.
Resumo:
BACKGROUND Recovery after arterial ischaemic stroke is known to largely depend on the plastic properties of the brain. The present study examines changes in the network topography of the developing brain after stroke. Effects of brain damage are best assessed by examining entire networks rather than single sites of structural lesions. Relating these changes to post-stroke neuropsychological variables and motor abilities will improve understanding of functional plasticity after stroke. Inclusion of healthy controls will provide additional insight into children's normal brain development. Resting state functional magnetic resonance imaging is a valid approach to topographically investigate the reorganisation of functional networks after a brain lesion. Transcranial magnetic stimulation provides complementary output information. This study will investigate functional reorganisation after paediatric arterial ischaemic stroke by means of resting state functional magnetic resonance imaging and transcranial magnetic stimulation in a cross-sectional plus longitudinal study design. The general aim of this study is to better understand neuroplasticity of the developing brain after stroke in order to develop more efficacious therapy and to improve the post-stroke functional outcome. METHODS The cross-sectional part of the study will investigate the functional cerebral networks of 35 children with chronic arterial ischaemic stroke (time of the lesion >2Â years). In the longitudinal part, 15 children with acute arterial ischaemic stroke (shortly after the acute phase of the stroke) will be included and investigations will be performed 3 times within the subsequent 9Â months. We will also recruit 50 healthy controls, matched for age and sex. The neuroimaging and neurophysiological data will be correlated with neuropsychological and neurological variables. DISCUSSION This study is the first to combine resting state functional magnetic resonance imaging and transcranial magnetic stimulation in a paediatric population diagnosed with arterial ischaemic stroke. Thus, this study has the potential to uniquely contribute to the understanding of neuronal plasticity in the brains of healthy children and those with acute or chronic brain injury. It is expected that the results will lead to the development of optimal interventions after arterial ischaemic stroke.
Resumo:
Optimal adjustment of brain networks allows the biased processing of information in response to the demand of environments and is therefore prerequisite for adaptive behaviour. It is widely shown that a biased state of networks is associated with a particular cognitive process. However, those associations were identified by backward categorization of trials and cannot provide a causal association with cognitive processes. This problem still remains a big obstacle to advance the state of our field in particular human cognitive neuroscience. In my talk, I will present two approaches to address the causal relationships between brain network interactions and behaviour. Firstly, we combined connectivity analysis of fMRI data and a machine leaning method to predict inter-individual differences of behaviour and responsiveness to environmental demands. The connectivity-based classification approach outperforms local activation-based classification analysis, suggesting that interactions in brain networks carry information of instantaneous cognitive processes. Secondly, we have recently established a brand new method combining transcranial alternating current stimulation (tACS), transcranial magnetic stimulation (TMS), and EEG. We use the method to measure signal transmission between brain areas while introducing extrinsic oscillatory brain activity and to study causal association between oscillatory activity and behaviour. We show that phase-matched oscillatory activity creates the phase-dependent modulation of signal transmission between brain areas, while phase-shifted oscillatory activity blunts the phase-dependent modulation. The results suggest that phase coherence between brain areas plays a cardinal role in signal transmission in the brain networks. In sum, I argue that causal approaches will provide more concreate backbones to cognitive neuroscience.