990 resultados para Trace elements in water


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A total of 32 samples of surficial soil were collected from 16 playground areas in Madrid (Spain), in order to investigate the importance of the geochemistry of the soil on subsequent bioaccessibility of trace elements. The in vitro bioaccessibility of As, Co, Cr, Cu, Ni, Pb and Zn was evaluated by means of two extraction processes that simulate the gastric environment and one that reproduces a gastric + intestinal digestion sequence. The results of the in vitro bioaccessibility were compared against aqua regia extractions (“total” concentration), and it was found that total concentrations of As, Cu, Pb and Zn were double those of bioaccessible values, whilst that of Cr was ten times higher. Whereas the results of the gastric + intestinal extraction were affected by a high uncertainty, both gastric methods offered very similar and consistent results, with bioaccessibilities following the order: As = Cu = Pb = Zn > Co > Ni > Cr, and ranging from 63 to 7 %. Selected soil properties including pH, organic matter, Fe and CaCO3 content were determined to assess their influence on trace element bioaccessibility, and it was found that Cu, Pb and Zn were predominantly bound to organic matter and, to a lesser extent, Fe oxides. The former fraction was readily accessible in the gastric solution, whereas Fe oxides seemed to recapture negatively charged chloride complexes of these elements in the gastric solution, lowering their bioaccessibility. The homogeneous pH of the playground soils included in the study does not influence trace element bioaccessibility to any significant extent except for Cr, where the very low gastric accessibility seems to be related to the strongly pH-dependent formation of complexes with organic matter. The results for As, which have been previously described and discussed in detail in Mingot et al. (Chemosphere 84: 1386–1391, 2011), indicate a high gastric bioaccessibility for this element as a consequence of its strong association with calcium carbonate and the ease with which these bonds are broken in the gastric solution. The calculation of risk assessments are therefore dependant on the methodology used and the specific environment they address. This has impacts on management strategies formulated to ensure that the most vulnerable of society, children, can live and play without adverse consequences to their health.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We review the evolution, state of the art and future lines of research on the sources, transport pathways, and sinks of particulate trace elements in urban terrestrial environments to include the atmosphere, soils, and street and indoor dusts. Such studies reveal reductions in the emissions of some elements of historical concern such as Pb, with interest consequently focusing on other toxic trace elements such as As, Cd, Hg, Zn, and Cu. While establishment of levels of these elements is important in assessing the potential impacts of human society on the urban environment, it is also necessary to apply this knowledge in conjunction with information on the toxicity of those trace elements and the degree of exposure of human receptors to an assessment of whether such contamination represents a real risk to the city’s inhabitants and therefore how this risk can be addressed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A geochemical model of an urban environment is presented in which multielemental tracers are used to characterise the circulation of trace elements in particulate matter_atmospheric aerosol, street dust and urban soil, within a city.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The elemental composition, patterns of distribution and possible sources of street dust are not common to all urban environments, but vary according to the peculiarities of each city. The common features and dissimilarities in the origin and nature of street dust were investigated through a series of studies in two widely different cities, Madrid (Spain) and Oslo (Norway), between 1990 and 1994. The most comprehensive sampling campaign was carried out in the Norwegian capital during the summer of 1994. An area of 14 km2, covering most of downtown Oslo and some residential districts to the north of the city, was divided into 1 km2 mapping units, and 16 sampling increments of approximately 150 g were collected from streets and roads in each of them. The fraction below 100 μm was acid-digested and analysed by ICP-MS. Statistical analyses of the results suggest that chemical elements in street dust can be classified into three groups: “urban” elements (Ba, Cd, Co, Cu, Mg, Pb, Sb, Ti, Zn), “natural” elements (Al, Ga, La, Mn, Na, Sr, Th, Y) and elements of a mixed origin or which have undergone geochemical changes from their original sources (Ca, Cs, Fe, Mo, Ni, Rb, Sr, U). Soil resuspension and/or mobilisation appears to be the most important source of “natural” elements, while “urban” elements originate primarily from traffic and from the weathering and corrosion of building materials. The data for Pb seem to prove that the gradual shift from leaded to unleaded petrol as fuel for automobiles has resulted in an almost proportional reduction in the concentration of Pb in dust particles under 100 μm. This fact and the spatial distribution of Pb in the city strongly suggest that lead sources other than traffic (i.e. lead accumulated in urban soil over the years) may contribute as much lead, if not more, to urban street dust.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present geochemical data of black smoker particulates filtered from hydrothermal fluids with seawater-dilutions ranging from 0-99%. Results indicate the dominance of sulphide minerals (Fe, Cu, and Zn sulphides) in all samples taken at different hydrothermal sites on the Mid-Atlantic Ridge. Pronounced differences in the geochemistry of the particles between Logatchev I and 5°S hydrothermal fields could be attributed to differences in fluid chemistry. Lower metal/sulphur ratios (Me/H2S < 1) compared to Logatchev I result in a larger amount of particles precipitated per liter fluid and the occurrence of elemental sulphur at 5°S, while at Logatchev I Fe oxides occur in larger amounts. Systematic trends with dilution degree of the fluid include the precipitation of large amounts of Cu sulphides at a low dilution and a pronounced drop with increasing dilution. Moreover, Fe (sulphides or oxides) precipitation increases with dilution of the vent fluid by seawater. Geochemical reaction path modeling of hydrothermal fluid-seawater mixing and conductive cooling indicates that Cu sulphide formation at Logatchev I and 5°S mainly occurs at high temperatures and low dilution of the hydrothermal fluid by seawater. Iron precipitation is enhanced at higher fluid dilution, and the different amounts of minerals forming at 5°S and Logatchev I are thermodynamically controlled. Larger total amounts of minerals and larger amounts of sulphide precipitate during the mixing path when compared to the cooling path. Differences between model and field observations do occur and are attributable to closed system modeling, to kinetic influences and possibly to organic constituents of the hydrothermal fluids not accounted for by the model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trace-element content in igneous quartz from granitoids of different geochemical types from Bohemian Massif (Central Evrope) was investigated using the laser ablation ICP-MS technique. Two laboratories (Geological Survey of Norway, Trondheim, and Institute of Geology of the Academy of Science of Czech Republic, Praha) were involved in the trace-element (Li, Be, B, Mn, Ge, Rb, Ba, Pb, Mg, Al, P, Ca, Ti, Fe, and Sn) analyses of quartz (altogether, ~300 analyses of 17 rock samples). About 200 representative analyses of quartz are given in Tables 1 and 2.