956 resultados para Torque Arms
Resumo:
An analytical approach for spin-stabilized spacecraft attitude prediction is presented for the influence of the residual magnetic torques. Assuming an inclined dipole model for the Earth's magnetic field, an analytical averaging method is applied to obtain the mean residual torque every orbital period. The orbit mean anomaly is utilized to compute the average components of residual torque in the spacecraft body frame reference system. The theory is developed for time variations in the orbital elements, and non-circular orbits, giving rise to many curvature integrals. It is observed that the residual magnetic torque does not have component along the spin axis. The inclusion of this torque on the rotational motion differential equations of a spin stabilized spacecraft yields conditions to derive an analytical solution. The solution shows that residual torque does not affect the spin velocity magnitude, contributing only for the precession and the drift of the spin axis of the spacecraft. (c) 2005 COSPAR. Published by Elsevier Ltd. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Background: The literature reports that the eccentric muscular action produces greater force and lower myoelectric activity than the concentric muscular action, while the heart rate (HR) responses are bigger during concentric contraction. Objectives: To investigate the maximum average torque (MAT), surface electromyographic (SEMG) and the heart rate (HR) responses during different types of muscular contraction and angular velocities in older men. Methods: Twelve healthy men (61.7 +/- 1.6years) performed concentric (C) and eccentric (E) isokinetic knee extension-flexion at 60 degrees/s and 120 degrees/s. SEMG activity was recorded from vastus lateralis muscle and normalized by Root Mean Square-RMS (mu V) of maximal isometric knee extension at 60 degrees. HR (beats/min) and was recorded at rest and throughout each contraction. The data were analyzed by the Friedman test for repeated measures with post hoc Dunn's test (p<0.05). Results: The median values of MAT (N.m/kg) was smaller and the RMS (mu V) was larger during concentric contraction (C60 degrees/s=2.80 and 0.99; C120 degrees/s=2.46 and 1.0) than eccentric (E60 degrees/s=3.94 and 0.85; E120 degrees/s=4.08 and 0.89), respectively. The HR variation was similar in the four conditions studied. Conclusion: The magnitude of MAT and RMS responses in older men were dependent of the nature of the muscular action and independent of the angular velocity, whereas HR response was not influenced by these factors.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objectives: To evaluate the effect of insertion torque on micromotion to a lateral force in three different implant designs. Material and methods: Thirty-six implants with identical thread design, but different cutting groove design were divided in three groups: (1) non-fluted (no cutting groove, solid screw-form); (2) fluted (901 cut at the apex, tap design); and (3) Blossomt (Patent pending) (non-fluted with engineered trimmed thread design). The implants were screwed into polyurethane foam blocks and the insertion torque was recorded after each turn of 901 by a digital torque gauge. Controlled lateral loads of 10N followed by increments of 5 up to 100N were sequentially applied by a digital force gauge on a titanium abutment. Statistical comparison was performed with two-way mixed model ANOVA that evaluated implant design group, linear effects of turns and displacement loads, and their interaction. Results: While insertion torque increased as a function of number of turns for each design, the slope and final values increased (Po0.001) progressively from the Blossomt to the fluted to the non-fluted design (M +/- standard deviation [SD] = 64.1 +/- 26.8, 139.4 +/- 17.2, and 205.23 +/- 24.3 Ncm, respectively). While a linear relationship between horizontal displacement and lateral force was observed for each design, the slope and maximal displacement increased (Po0.001) progressively from the Blossomt to the fluted to the non-fluted design (M +/- SD 530 +/- 57.7, 585.9 +/- 82.4, and 782.33 +/- 269.4 mm, respectively). There was negligible to moderate levels of association between insertion torque and lateral displacement in the Blossomt, fluted and non-fluted design groups, respectively. Conclusion: Insertion torque was reduced in implant macrodesigns that incorporated cutting edges, and lesser insertion torque was generally associated with decreased micromovement. However, insertion torque and micromotion were unrelated within implant designs, particularly for those designs showing the least insertion torque.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
O objetivo foi comparar a magnitude do efeito protetor (EP) contra o dano muscular (DM) induzido por uma sessão de exercícios excêntricos (EEM) entre os extensores do joelho e os flexores do cotovelo. Doze sujeitos do gênero masculino foram divididos em 2 grupos, braços (GB) e pernas (GP), e realizaram 2 sessões de EEM. Foram coletados 3 marcadores de DM, sendo eles, pico de torque isométrico (PTI), creatina quinase (CK) e percepção subjetiva de dor (PSD), antes, imediatamente após (com exceção da CK) e 48 horas após cada sessão de EEM. Foi encontrada queda significante de PTI e aumento significante de CK e PSD tanto imediatamente e 48 horas após a primeira sessão de EEM para o GB. No GP houve aumento significante de CK 48 horas após os EEM e da PSD imediatamente após os EEM, decorrentes da primeira sessão. No GB, a segunda sessão apenas provocou queda de PTI imediatamente após os EEM, enquanto no GP houve aumento significante apenas na PSD imediatamente após a segunda sessão de EEM. Apenas a CK apresentou EP para ambos os grupos. Pudemos concluir que o EP foi maior para o GB em comparação com o GP. Esse fenômeno pode ter ocorrido em detrimento da existência de um EP prévio para o GP, uma vez que este membro realiza contrações excêntricas intensas com maior freqüência no dia-a-dia, quando comparados com os GB.
Resumo:
Running exercises are frequently related to muscular injuries, which may be a result of muscular imbalance. The present study aimed to verify the effects of heavy-intensity continuous running exercise on the functional and conventional hamstrings: quadriceps ratios, and also in the knee flexors and extensors EMG activity in active non-athletic individuals. Sixteen active males performed maximal isokinetic concentric and eccentric knee flexions and extensions at 60 degrees s(-1) and 180 degrees s(-1). In another session, the same procedure was conducted after a continuous running exercise at 95% onset of blood lactate accumulation. Torque and electromyographic ratios were calculated from peak torque and integrated electromyographic activity (knee flexor and extensors). Creatine kinase was measured before and 24 h after running exercise. Eccentric torque (knee flexion and extension) decreased significantly after running only at 180 degrees s(-1) (p < 0.05). No differences were found for the conventional torque ratios (p > 0.05), however, the functional torque ratios at 180 degrees s(-1) decreased significantly after running (p < 0.05). No effects on the electromyographic activity and electronnyographic ratios were found (p > 0.05). Creatine kinase increased slightly 24 h after running (p < 0.05). Heavy-intensity continuous running exercise decreased knee flexor and extensor eccentric torque, and functional torque ratios under fast velocities (180 degrees s(-1)), probably as result of peripheral fatigue. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The induction motors are largely used in several industry sectors. The dimensioning of an induction motor has still been inaccurate because in most of the cases the load behavior in its shaft is completely unknown. The proposal of this paper is to use artificial neural networks as tool for dimensioning of induction motors rather than conventional methods, which use classical identification techniques and mechanical load modeling. Simulation results are also presented to validate the proposed approach.
Resumo:
Background: This study investigated the influence of estrogen deficiency and its treatment with estrogen and alendronate on the removal torque of osseointegrated titanium implants.Methods: Fifty-eight female Wistar rats received a titanium implant in the tibia metaphysis. After 60 days, which was needed for implant osseointegration, the animals were randomly divided into five groups: control (CTLE; N = 10), sham surgery (SHAM; N = 12), ovariectomy (OVX; N = 12), ovariectomy followed by hormone replacement (EST; N = 12), and ovariectomy followed by treatment with alendronate (ALE; N = 12). The CTLE group was sacrificed to confirm osseointegration, whereas the remaining groups were submitted to sham surgery or ovariectomy according to their designations. After 90 days, these animals were also sacrificed. Densitometry of femur and lumbar vertebrae was performed by dual-energy x-ray absorptiometry (DXA) to confirm systemic impairment of the animals. All implants were subjected to removal torque.Results: Densitometric analysis of the femur and lumbar vertebrae confirmed a systemic impairment of the animals, disclosing lower values of bone mineral density for OVX. Analysis of the removal torque of the implants showed statistically lower values (P <0.05) for the OVX group in relation to the other groups. However, the group treated with alendronate (ALE group) presented significantly higher torque values compared to the others.Conclusion: According to this study, estrogen deficiency was observed to have a negative influence on the removal torque of osseointegrated implants, whereas treatment with alendronate
Resumo:
An analytical approach for the spin stabilized satellite attitude propagation is presented using the non-singular canonical variables to describe the rotational motion. Two sets of variables were introduced for Fukushima in 1994 by a canonical transformation and they are useful when the angle between z-satellite axis of a coordinate system fixed in artificial satellite and the rotational angular momentum vector is zero or when the angle between Z-equatorial axis and rotation angular momentum vector is zero. Analytical solutions for rotational motion equations and torque-free motion are discussed in terms of the elliptic functions and by the application of some simplification to get an approximated solution. These solutions are compared with a numerical solution and the results show a good agreement for many rotation periods. When the mean Hamiltonian associated with the gravity gradient torque is included, an analytical solution is obtained by the application of the successive approximations' method for the satellite in an elliptical orbit. These solutions show that the magnitude of the rotation angular moment is not affected by the gravity gradient torque but this torque causes linear and periodic variations in the angular variables, long and short periodic variations in Z-equatorial component of the rotation angular moment and short periodic variations in x-satellite component of the rotation angular moment. The goal of this analysis is to emphasize the geometrical and physical meaning of the non-singular variables and to validate the approximated analytical solution for the rotational motion without elliptic functions for a non-symmetrical satellite. The analysis can be applied for spin stabilized satellite and in this case the general solution and the approximated solution are coincidence. Then the results can be used in analysis of the space mission of the Brazilian Satellites. (C) 2007 COSPAR. Published by Elsevier Ltd. All rights reserved.