970 resultados para Tobacco smoke exposure


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pós-graduação em Fisioterapia - FCT

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: The use of biomass for cooking and heating is considered an important factor associated with respiratory diseases. However, few studies evaluate the amount of particulate matter less than 2.5 mu in diameter (PM2.5), symptoms and lung function in the same population. Objectives: To evaluate the respiratory effects of biomass combustion and compare the results with those of individuals from the same community in Brazil using liquefied petroleum gas (Gas). Methods: 1402 individuals in 260 residences were divided into three groups according to exposure (Gas, Indoor-Biomass, Outside-Biomass). Respiratory symptoms were assessed using questionnaires. Reflectance of paper filters was used to assess particulate matter exposure. In 48 residences the amount of PM2.5 was also quantified. Pulmonary function tests were performed in 120 individuals. Results: Reflectance index correlated directly with PM2.5 (r=0.92) and was used to estimate exposure (ePM2.5). There was a significant increase in ePM2.5 in Indoor-Biomass and Outside-Biomass, compared to Gas. There was a significantly increased odds ratio (OR) for cough, wheezing and dyspnea in adults exposed to Indoor-Biomass (OR=2.93, 2.33, 2.59, respectively) and Outside-Biomass (OR=1.78, 1.78, 1.80, respectively) compared to Gas. Pulmonary function tests revealed both Non-Smoker-Biomass and Smoker-Gas individuals to have decreased %predicted-forced expiratory volume in the first second (FEV1) and FEV1/forced vital capacity (FVC) as compared to Non-Smoker-Gas. Pulmonary function tests data was inversely correlated with duration and ePM2.5. The prevalence of airway obstruction was 20% in both Non-Smoker-Biomass and Smoker-Gas subjects. Conclusion: Chronic exposure to biomass combustion is associated with increased prevalence of respiratory symptoms, reduced lung function and development of chronic obstructive pulmonary disease. These effects are associated with the duration and magnitude of exposure and are exacerbated by tobacco smoke. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cogo K, de Andrade A, Labate CA, Bergamaschi CC, Berto LA, Franco GCN, Goncalves RB, Groppo FC. Proteomic analysis of Porphyromonas gingivalis exposed to nicotine and cotinine. J Periodont Res 2012; 47: 766775. (c) 2012 John Wiley & Sons A/S Background and Objective: Smokers are more predisposed than nonsmokers to infection with Porphyromonas gingivalis, one of the most important pathogens involved in the onset and development of periodontitis. It has also been observed that tobacco, and tobacco derivatives such as nicotine and cotinine, can induce modifications to P. gingivalis virulence. However, the effect of the major compounds derived from cigarettes on expression of protein by P.gingivalis is poorly understood. Therefore, this study aimed to evaluate and compare the effects of nicotine and cotinine on the P.gingivalis proteomic profile. Material and Methods: Total proteins of P gingivalis exposed to nicotine and cotinine were extracted and separated by two-dimensional electrophoresis. Proteins differentially expressed were successfully identified through liquid chromatography-mass spectrometry and primary sequence databases using MASCOT search engine, and gene ontology was carried out using DAVID tools. Results: Of the approximately 410 protein spots that were reproducibly detected on each gel, 23 were differentially expressed in at least one of the treatments. A particular increase was seen in proteins involved in metabolism, virulence and acquisition of peptides, protein synthesis and folding, transcription and oxidative stress. Few proteins showed significant decreases in expression; those that did are involved in cell envelope biosynthesis and proteolysis and also in metabolism. Conclusion: Our results characterized the changes in the proteome of P.gingivalis following exposure to nicotine and cotinine, suggesting that these substances may modulate, with minor changes, protein expression. The present study is, in part, a step toward understanding the potential smokepathogen interaction that may occur in smokers with periodontitis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background In the last 20 years, there has been an increase in the incidence of allergic respiratory diseases worldwide and exposure to air pollution has been discussed as one of the factors associated with this increase. The objective of this study was to investigate the effects of air pollution on peak expiratory flow (PEF) and FEV1 in children with and without allergic sensitization. Methods Ninety-six children were followed from April to July, 2004 with spirometry measurements. They were tested for allergic sensitization (IgE, skin prick test, eosinophilia) and asked about allergic symptoms. Air pollution, temperature, and relative humidity data were available. Results Decrements in PEF were observed with previous 24-hr average exposure to air pollution, as well as with 310-day average exposure and were associated mainly with PM10, NO2, and O3 in all three categories of allergic sensitization. Even though allergic sensitized children tended to present larger decrements in the PEF measurements they were not statistically different from the non-allergic sensitized. Decrements in FEV1 were observed mainly with previous 24-hr average exposure and 3-day moving average. Conclusions Decrements in PEF associated with air pollution were observed in children independent from their allergic sensitization status. Their daily exposure to air pollution can be responsible for a chronic inflammatory process that might impair their lung growth and later their lung function in adulthood. Am. J. Ind. Med. 55:10871098, 2012. (c) 2012 Wiley Periodicals, Inc.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Non-mechanised sugarcane harvesting preceded by burning exposes workers and the people of neighbouring towns to high concentrations of pollutants. This study was aimed to evaluate the respiratory symptoms, lung function and oxidative stress markers in sugarcane workers and the residents of Mendonca, an agricultural town in Brazil, during the non-harvesting and harvesting periods and to assess the population and individual exposures to fine particulate matter (PM2.5). Sugarcane workers and healthy volunteers were evaluated with two respiratory symptom questionnaires, spirometry, urinary 1-hydroxypyrene levels, and the measurement of antioxidant enzymes and plasma malonaldehyde during the non-harvesting and harvesting periods. The environmental assessment was determined from PM2.5 concentration. PM2.5 level increased from 8 mu g/m(3) during the non-harvesting period to 23.5 mu g/m(3) in the town and 61 mu g/m(3) on the plantations during the harvesting period. Wheezing, coughing, sneezing, and breathlessness increased significantly in both groups during the harvesting period, but more markedly in workers. A decrease in lung function and antioxidant enzyme activity was observed in both populations during harvesting; this decrease was greater among the sugarcane workers. The urinary 1-hydroxypyrene levels only increased in the sugarcane workers during the harvesting period. The malonaldehyde levels were elevated in both groups, with a higher increase observed in the workers. This research demonstrates the exposure of sugarcane workers and the inhabitants of a neighbouring town to high PM2.5 concentrations during the sugarcane harvest period. This exposure was higher among the sugarcane workers, as illustrated by both higher PM2.5 concentrations in the sugarcane fields and higher urinary 1-hydroxypyrene levels in the volunteers in this group. The higher incidence of respiratory symptoms, greater decrease in lung function and more marked elevation of oxidative stress markers among the sugarcane workers during the harvest confirms the greater effect magnitude in this population and a dose-dependent relationship between pollution and the observed effects. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Previous studies have shown that particulate matter (PM) compromise birth weight and placental morphology. We hypothesized that exposing mice to ambient PM would affect umbilical cord (UC) morphology. To test this, mice were kept in paired open-top exposure chambers at the same location and ambient conditions but, in one chamber, the air was filtered (F) and, in the other, it was not (NF). UCs were analysed stereologically and by immunohistochemistry to localize isoprostane and endothelin receptors. The cords of mice from NF chambers were smaller in volume due to loss of mucoid connective tissue and decrease in volume of collagen. These structural changes and in umbilical vessels were associated with greater volumes of regions immunostained for isoprostane, ETAR and ETBR. Findings indicate that the adverse effects of PM on birth weight may be mediated in part by alterations in UC structure or imbalances in the endogenous regulators of vascular tone and oxidative stress. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Human biomonitoring (HBM) is an ideal tool for evaluating toxicant exposure in health risk assessment. Chemical substances or their metabolites related to environmental pollutants can be detected as biomarkers of exposure using a wide variety of biological fluids. Individual exposure to aromatic hydrocarbon compounds (benzene, toluene, and o-xylene –“BTX”) were analysed with a liquid chromatography coupled to electrospray ionisation-mass spectrometry (μHPLC-ESI-MS/MS) method for the simultaneous quantitative detection of the BTX exposure biomarker SPMA, SBMA and o-MBMA in human urine. Urinary S-phenylmercapturic acid (SPMA) is a biomarker proposed by the American Conference of Governmental Industrial Hygienists (ACGIH) for assessing occupational exposure to benzene (Biological Exposure Index of 25 microg/g creatinine). Urinary S-benzylmercapturic (SBMA) and o-methyl S-benzyl mercapturic acid (o-MBMA) are specific toluene and o-xylene metabolites of glutathione detoxicant pathways, proposed as reliable biomarkers of exposure. To this aim a pre-treatment of the urine with solid phase extraction (SPE) and an evaporation step were necessary to concentrate the mercapturic acids before instrumental analysis. A liquid chromatography separation was carried out with a reversed phase capillary column (Synergi 4u Max-RP) using a binary gradient composed of an acquous solution of formic acid 0.07% v/v and methanol. The mercapturic acids were determinated by negative-ion-mass spectrometry and the data were corrected using isotope-labelled analogs as internal standards. The analytical method follows U.S. Food and Drug Administration guidance and was applied to assess exposure to BTX in a group of 396 traffic wardens. The association between biomarker results and individual factors, such as age, sex and tobacco smoke were also investigated. The present work also included improvements in the methods used by modifying various chromatographic parameters and experimental procedures. A partial validation was conducted to evaluate LOD, precision, accuracy, recovery as well as matrix effects. Higher sensitivity will be possible in future biological monitoring programmes, allowing evaluation of very low level of BTX human exposure. Keywords: Human biomonitoring, aromatic hydrocarbons, biomarker of exposure, HPLC-MS/MS.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We performed 124 measurements of particulate matter (PM(2.5)) in 95 hospitality venues such as restaurants, bars, cafés, and a disco, which had differing smoking regulations. We evaluated the impact of spatial separation between smoking and non-smoking areas on mean PM(2.5) concentration, taking relevant characteristics of the venue, such as the type of ventilation or the presence of additional PM(2.5) sources, into account. We differentiated five smoking environments: (i) completely smoke-free location, (ii) non-smoking room spatially separated from a smoking room, (iii) non-smoking area with a smoking area located in the same room, (iv) smoking area with a non-smoking area located in the same room, and (v) smoking location which could be either a room where smoking was allowed that was spatially separated from non-smoking room or a hospitality venue without smoking restriction. In these five groups, the geometric mean PM(2.5) levels were (i) 20.4, (ii) 43.9, (iii) 71.9, (iv) 110.4, and (v) 110.3 microg/m(3), respectively. This study showed that even if non-smoking and smoking areas were spatially separated into two rooms, geometric mean PM(2.5) levels in non-smoking rooms were considerably higher than in completely smoke-free hospitality venues. PRACTICAL IMPLICATIONS: PM(2.5) levels are considerably increased in the non-smoking area if smoking is allowed anywhere in the same location. Even locating the smoking area in another room resulted in a more than doubling of the PM(2.5) levels in the non-smoking room compared with venues where smoking was not allowed at all. In practice, spatial separation of rooms where smoking is allowed does not prevent exposure to environmental tobacco smoke in nearby non-smoking areas.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

There is poor agreement on definitions of different phenotypes of preschool wheezing disorders. The present Task Force proposes to use the terms episodic (viral) wheeze to describe children who wheeze intermittently and are well between episodes, and multiple-trigger wheeze for children who wheeze both during and outside discrete episodes. Investigations are only needed when in doubt about the diagnosis. Based on the limited evidence available, inhaled short-acting beta(2)-agonists by metered-dose inhaler/spacer combination are recommended for symptomatic relief. Educating parents regarding causative factors and treatment is useful. Exposure to tobacco smoke should be avoided; allergen avoidance may be considered when sensitisation has been established. Maintenance treatment with inhaled corticosteroids is recommended for multiple-trigger wheeze; benefits are often small. Montelukast is recommended for the treatment of episodic (viral) wheeze and can be started when symptoms of a viral cold develop. Given the large overlap in phenotypes, and the fact that patients can move from one phenotype to another, inhaled corticosteroids and montelukast may be considered on a trial basis in almost any preschool child with recurrent wheeze, but should be discontinued if there is no clear clinical benefit. Large well-designed randomised controlled trials with clear descriptions of patients are needed to improve the present recommendations on the treatment of these common syndromes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Chronic obstructive pulmonary disease (COPD) is characterized by emphysema and chronic bronchitis and is a leading cause of morbidity and mortality worldwide. Tobacco smoke and deficiency in α1-antitrypsin (AAT) are the most prominent environmental and genetic risk factors, respectively. Yet the pathogenesis of COPD is not completely elucidated. Disease progression appears to include a vicious circle driven by self-perpetuating lung inflammation, endothelial and epithelial cell death, and proteolytic degradation of extracellular matrix proteins. Like AAT, serpinB1 is a potent inhibitor of serine proteases including neutrophil elastase and cathepsin G. Because serpinB1 is expressed in myeloid and lung epithelial cells and is protective during lung infections, we investigated the role of serpinB1 in preventing age-related and cigarette smoke-induced emphysema in mice. Fifteen-month-old mice showed increased lung volume and decreased pulmonary function compared with young adult mice (3 mo old), but no differences were observed between serpinB1-deficient (KO) and wild-type (WT) mice. Chronic exposure to secondhand cigarette smoke resulted in structural emphysematous changes compared with respective control mice, but no difference in lung morphometry was observed between genotypes. Of note, the different pattern of stereological changes induced by age and cigarette smoke suggest distinct mechanisms leading to increased airway volume. Finally, expression of intracellular and extracellular protease inhibitors were differently regulated in lungs of WT and KO mice following smoke exposure; however, activity of proteases was not significantly altered. In conclusion, we showed that, although AAT and serpinB1 are similarly potent inhibitors of neutrophil proteases, serpinB1 deficiency is not associated with more severe emphysema.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Exposure to outdoor air pollutants and passive tobacco smoke are common but avoidable worldwide risk factors for morbidity and mortality of individuals. In addition to well-known effects of pollutants on the cardiovascular system and the development of cancer, in recent years the association between air pollution and respiratory morbidity has become increasingly apparent. Not only in adults, but also in children with asthma and in healthy children a clear harmful effect of exposure towards air pollutants has been demonstrated in many studies. Among others increased pollution has been shown to result in more frequent and more severe respiratory symptoms, more frequent exacerbations, higher need for asthma medication, poorer lung function and increased visits to the emergency department and more frequent hospitalisations. While these associations are well established, the available data on the role of air pollution in the development of asthma seems less clear. Some studies have shown that increased exposure towards tobacco smoke and air pollution leads to an increase in asthma incidence and prevalence; others were not able to confirm those findings. Possible reasons for this discrepancy are different definitions of the outcome asthma, different methods for exposure estimation and differences in the populations studied with differing underlying genetic backgrounds. Regardless of this inconsistency, several mechanisms have already been identified linking air pollution with asthma development. Among these are impaired lung growth and development, immunological changes, genetic or epigenetic effects or increased predisposition for allergic sensitisation. What the exact interactions are and which asthmatic phenotypes will be influenced most by pollutants will be shown by future studies. This knowledge will then be helpful in exploring possible preventive measures for the individual and to help policy makers in deciding upon most appropriate regulations on a population level.