905 resultados para Timber structures
Resumo:
Arquitetura Corporativa promove o estabelecimento de uma visão holística da estrutura e forma de trabalho de uma organização. Um dos aspectos abordados em Arquitetura Corporativa está associada a "estrutura ativa" da organização, que diz respeito a “quem" realiza as atividades organizacionais. Várias abordagens têm sido propostas a fim de proporcionar um meio para a representação de Arquitetura Corporativa, entre as quais ARIS, RM-ODP, UPDM e ArchiMate. Apesar da aceitação por parte da comunidade, as abordagens existentes se concentram em propósitos diferentes, têm limitações de escopo e algumas não têm semântica de mundo real bem definida. Além das abordagens de modelagem, muitas abordagens de ontologias têm sido propostas, a fim de descrever o domínio de estrutura ativa, incluindo as ontologias de SUPER Project, TOVE, Enterprise Ontology e W3C Org Ontology. Embora especificadas para fundamentação semântica e negociação de significado, algumas das abordagens propostas têm fins específicos e cobertura limitada. Além disso, algumas das abordagens não são definidas usando linguagens formais e outras são especificadas usando linguagens sem semântica bem definida. Este trabalho apresenta uma ontologia de referência bem fundamentada para o domínio organizacional. A ontologia organizacional de referência apresentada abrange os aspectos básicos discutidos na literatura organizacional, tais como divisão do trabalho, relações sociais e classificação das unidades estruturais. Além disso, também abrange os aspectos organizacionais definidos em abordagens existentes, levando em consideração tanto abordagens de modelagem quanto abordagens ontológicas. A ontologia resultante é especificada em OntoUML e estende os conceitos sociais de UFO-C.
Resumo:
Chronic stress impairs cognitive function, namely on tasks that rely on the integrity of cortico-limbic networks. To unravel the functional impact of progressive stress in cortico-limbic networks we measured neural activity and spectral coherences between the ventral hippocampus (vHIP) and the medial prefrontal cortex (mPFC) in rats subjected to short term stress (STS) and chronic unpredictable stress (CUS). CUS exposure consistently disrupted the spectral coherence between both areas for a wide range of frequencies, whereas STS exposure failed to trigger such effect. The chronic stress-induced coherence decrease correlated inversely with the vHIP power spectrum, but not with the mPFC power spectrum, which supports the view that hippocampal dysfunction is the primary event after stress exposure. Importantly, we additionally show that the variations in vHIP-to-mPFC coherence and power spectrum in the vHIP correlated with stress-induced behavioral deficits in a spatial reference memory task. Altogether, these findings result in an innovative readout to measure, and follow, the functional events that underlie the stress-induced reference memory impairments.
Resumo:
A package of B-spline finite strip models is developed for the linear analysis of piezolaminated plates and shells. This package is associated to a global optimization technique in order to enhance the performance of these types of structures, subjected to various types of objective functions and/or constraints, with discrete and continuous design variables. The models considered are based on a higher-order displacement field and one can apply them to the static, free vibration and buckling analyses of laminated adaptive structures with arbitrary lay-ups, loading and boundary conditions. Genetic algorithms, with either binary or floating point encoding of design variables, were considered to find optimal locations of piezoelectric actuators as well as to determine the best voltages applied to them in order to obtain a desired structure shape. These models provide an overall economy of computing effort for static and vibration problems.
Resumo:
In recent works large area hydrogenated amorphous silicon p-i-n structures with low conductivity doped layers were proposed as single element image sensors. The working principle of this type of sensor is based on the modulation, by the local illumination conditions, of the photocurrent generated by a light beam scanning the active area of the device. In order to evaluate the sensor capabilities is necessary to perform a response time characterization. This work focuses on the transient response of such sensor and on the influence of the carbon contents of the doped layers. In order to evaluate the response time a set of devices with different percentage of carbon incorporation in the doped layers is analyzed by measuring the scanner-induced photocurrent under different bias conditions.
Resumo:
Topology optimization consists in finding the spatial distribution of a given total volume of material for the resulting structure to have some optimal property, for instance, maximization of structural stiffness or maximization of the fundamental eigenfrequency. In this paper a Genetic Algorithm (GA) employing a representation method based on trees is developed to generate initial feasible individuals that remain feasible upon crossover and mutation and as such do not require any repairing operator to ensure feasibility. Several application examples are studied involving the topology optimization of structures where the objective functions is the maximization of the stiffness and the maximization of the first and the second eigenfrequencies of a plate, all cases having a prescribed material volume constraint.
Resumo:
Esta dissertação insere-se num projecto de investigação relacionado com o papel que a madeira apresenta na construção nos tempos de hoje, necessário para obtenção do Mestrado em Engenharia Civil. A madeira apresenta, enquanto material de construção, especificidades únicas: é um material orgânico, ao contrário da pedra, do aço e do betão; é um material combustível, sem que isto implique necessariamente uma baixa resistência ao fogo; é um material tradicional, presente em pavimentos e coberturas de edifícios antigos e é, paradoxalmente, um material novo, adoptado em arrojadas obras de arquitectura contemporânea. Estas características, associadas à necessidade de garantir a sustentabilidade da construção e de conservar e reabilitar o património edificado, tornam essencial o estudo das propriedades mecânicas do material, dos seus processos de degradação química e biológica, dos meios de protecção e do comportamento de elementos estruturais ao fogo. As estruturas em madeira têm tido uma procura crescente no nosso país, revelando-se uma opção interessante, como alternativa a estruturas de aço ou de betão. No entanto, por configurarem ainda soluções estruturais, materiais e processos construtivos pouco comuns entre nós, considera-se que não estão suficientemente divulgados os instrumentos de que podemos e devemos dispor para a garantia da qualidade destas estruturas. É apresentado um estudo de viabilidade económica no âmbito do nosso país, comparando casas em madeira, modulares pré-fabricadas, com casas cuja construção é feita em alvenaria e betão armado, de forma a poder comparar os custos para ambas as soluções construtivas. Para tal, foram realizadas visitas a empresas, fábricas e a obras com o objectivo de entender como funciona o processo de fabrico de uma casa pré-fabricada em madeira.
Resumo:
Characteristics of tunable wavelength filters based on a-SiC:H multi-layered stacked cells are studied both theoretically and experimentally. Results show that the light-activated photonic device combines the demultiplexing operation with the simultaneous photodetection and self amplification of an optical signal. The sensor is a bias wavelength current-controlled device that make use of changes in the wavelength of the background to control the power delivered to the load, acting a photonic active filter. Its gain depends on the background wavelength that controls the electrical field profile across the device.
Resumo:
Characteristics of tunable wavelength pi'n/pin filters based on a-SiC:H multilayered stacked cells are studied both experimental and theoretically. Results show that the device combines the demultiplexing operation with the simultaneous photodetection and self amplification of the signal. An algorithm to decode the multiplex signal is established. A capacitive active band-pass filter model is presented and supported by an electrical simulation of the state variable filter circuit. Experimental and simulated results show that the device acts as a state variable filter. It combines the properties of active high-pass and low-pass filter sections into a capacitive active band-pass filter using a changing photo capacitance to control the power delivered to the load.
Resumo:
The organotin(IV) compounds [Me2Sn(L)(2)] (1), [Et(2)sn(L)(2)] (2), [(Bu2Sn)-Bu-n(L)(2)] (3), [(n)Oct(2)Sn(L)(2)] (4), [Ph2Sn(L)(2)] (5), and [PhOSnL](6) (6) have been synthesized from the reactions of 1-(4-chlorophenyl)-1-cyclopentanecarboxylic acid (HL) with the corresponding diorganotin(IV) oxide or dichloride. They were characterized by IR and multinuclear NMR spectroscopies, elemental analysis, cyclic voltammetry, and, for 2, 3, 4 and 6, single crystal X-ray diffraction analysis. While 1-5 are mononuclear diorganotin (IV) compounds, the X-ray diffraction of 6 discloses a hexameric drumlike structure with a prismatic Sn6O6 core. All these complexes undergo irreversible reductions and were screened for their in vitro antitumor activities toward HL-60, BGC-823, Bel-7402, and KB human cancer cell lines. Within the mononuclear compounds, the most active ones (3, 5) are easiest to reduce (least cathodic reduction potentials), while the least active ones (1, 4) are the most difficult to reduce. Structural rearrangements (i.e., Sn-O bond cleavages and trans-to-cis isomerization) induced by reduction, which eventually can favor the bioactivity, are disclosed by theoretical/electrochemical studies.
Resumo:
Model updating methods often neglect that in fact all physical structures are damped. Such simplification relies on the structural modelling approach, although it compromises the accuracy of the predictions of the structural dynamic behaviour. In the present work, the authors address the problem of finite element (FE) model updating based on measured frequency response functions (FRFs), considering damping. The proposed procedure is based upon the complex experimental data, which contains information related to the damped FE model parameters and presents the advantage of requiring no prior knowledge about the damping matrix structure or its content, only demanding the definition of the damping type. Numerical simulations are performed in order to establish the applicability of the proposed damped FE model updating technique and its results are discussed in terms of the correlation between the simulated experimental complex FRFs and the ones obtained from the updated FE model.
Resumo:
OBJECTIVE: To assess the lag structure between air pollution exposure and elderly cardiovascular diseases hospital admissions, by gender. METHODS: Health data of people aged 64 years or older was stratified by gender in São Paulo city, Southeastern Brazil, from 1996 to 2001. Daily levels of air pollutants (CO, PM10, O3, NO2, and SO2) , minimum temperature, and relative humidity were also analyzed. It were fitted generalized additive Poisson regressions and used constrained distributed lag models adjusted for long time trend, weekdays, weather and holidays to assess the lagged effects of air pollutants on hospital admissions up to 20 days after exposure. RESULTS: Interquartile range increases in PM10 (26.21 mug/m³) and SO2 (10.73 mug/m³) were associated with 3.17% (95% CI: 2.09-4.25) increase in congestive heart failure and 0.89% (95% CI: 0.18-1.61) increase in total cardiovascular diseases at lag 0, respectively. Effects were higher among female group for most of the analyzed outcomes. Effects of air pollutants for different outcomes and gender groups were predominately acute and some "harvesting" were found. CONLUSIONS: The results show that cardiovascular diseases in São Paulo are strongly affected by air pollution.
Resumo:
Functionally graded materials are composite materials wherein the composition of the constituent phases can vary in a smooth continuous way with a gradation which is function of its spatial coordinates. This characteristic proves to be an important issue as it can minimize abrupt variations of the material properties which are usually responsible for localized high values of stresses, and simultaneously providing an effective thermal barrier in specific applications. In the present work, it is studied the static and free vibration behaviour of functionally graded sandwich plate type structures, using B-spline finite strip element models based on different shear deformation theories. The effective properties of functionally graded materials are estimated according to Mori-Tanaka homogenization scheme. These sandwich structures can also consider the existence of outer skins of piezoelectric materials, thus achieving them adaptive characteristics. The performance of the models, are illustrated through a set of test cases. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Multilayered heterostructures based on embedded a-Si:H and a-SiC:H p-i-n filters are analyzed from differential voltage design perspective using short- and long-pass filters. The transfer functions characteristics are presented. A numerical simulation is presented to explain the filtering properties of the photonic devices. Several monochromatic pulsed lights, separately (input channels) or in a polychromatic mixture (multiplexed signal) at different bit rates, illuminated the device. Steady-state optical bias is superimposed from the front and the back side. Results show that depending on the wavelength of the external background and impinging side, the device acts either as a short- or a long-pass band filter or as a band-stop filter. Particular attention is given to the amplification coefficient weights, which allow to take into account the wavelength background effects when a band or frequency needs to be filtered or the gate switch, in which optical active filter gates are used to select and filter input signals to specific output ports in wavelength division multiplexing (WDM) communication systems. This nonlinearity provides the possibility for selective removal or addition of wavelengths. A truth table of an encoder that performs 8-to-1 MUX function exemplifies the optoelectronic conversion.