980 resultados para Thermo-mechanical finite element model


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A robust finite element scheme for the micro-mechanical modeling of the behavior of fiber reinforced polymeric composites under external loads is developed. The developed model is used to simulate stress distribution throughout the composite domain and to identify the locations where maximum stress concentrations occur. This information is used as a guide to predict dominant failure and crack growth mechanisms in fiber reinforced composites. The differences between continuous fibers, which are susceptible to unidirectional transverse fracture, and short fibers have been demonstrated. To assess the validity and range of applicability of the developed scheme, numerical results obtained by the model are compared with the available experimental data and also with the values found using other methods reported in the literature. These comparisons show that the present finite element scheme can generate meaningful results in the analysis of fiber reinforced composites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lap joints are widely used in the manufacture of stiffened panels and influence local panel sub-component stability, defining buckling unit dimensions and boundary conditions. Using the Finite Element method it is possible to model joints in great detail and predict panel buckling behaviour with accuracy. However, when modelling large panel structures such detailed analysis becomes computationally expensive. Moreover, the impact of local behaviour on global panel performance may reduce as the scale of the modelled structure increases. Thus this study presents coupled computational and experimental analysis, aimed at developing relationships between modelling fidelity and the size of the modelled structure, when the global static load to cause initial buckling is the required analysis output. Small, medium and large specimens representing welded lap-joined fuselage panel structure are examined. Two element types, shell and solid-shell, are employed to model each specimen, highlighting the impact of idealisation on the prediction of welded stiffened panel initial skin buckling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The technique of externally bonding fibre reinforced polymer (FRP) composites has been becoming popular worldwide for retrofitting existing reinforced concrete (RC) structures. A major failure mode in such strengthened structures is the debonding of FRP from the concrete substrate. The bond behaviour between FRP and concrete thus plays a crucial role in these structures. The FRP-to-concrete bond behaviour has been extensively investigated experimentally, commonly using the pull-off test of FRP-to-concrete bonded joint. Comparatively, much less research has been concerned with the numerical simulation of this bond behaviour, chiefly due to difficulties in accurately modelling the complex behaviour of concrete. This paper proposes a robust finite element (FE) model for simulating the bond behaviour in the entire loading process in the pull-off test. A concrete damage plasticity model based on the plastic degradation theory is proposed to overcome the weakness of the elastic degradation theory which has been commonly adopted in previous studies. The model produces results in very close agreement with test data. © Tsinghua University Press, Beijing and Springer-Verlag Berlin Heidelberg 2011.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A one-dimensional water column model using the Mellor and Yamada level 2.5 parameterization of vertical turbulent fluxes is presented. The model equations are discretized with a mixed finite element scheme. Details of the finite element discrete equations are given and adaptive mesh refinement strategies are presented. The refinement criterion is an "a posteriori" error estimator based on stratification, shear and distance to surface. The model performances are assessed by studying the stress driven penetration of a turbulent layer into a stratified fluid. This example illustrates the ability of the presented model to follow some internal structures of the flow and paves the way for truly generalized vertical coordinates. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

EVENT has been used to examine the effects of 3D cloud structure, distribution, and inhomogeneity on the scattering of visible solar radiation and the resulting 3D radiation field. Large eddy simulation and aircraft measurements are used to create realistic cloud fields which are continuous or broken with smooth or uneven tops. The values, patterns and variance in the resulting downwelling and upwelling radiation from incident visible solar radiation at different angles are then examined and compared to measurements. The results from EVENT confirm that 3D cloud structure is important in determining the visible radiation field, and that these results are strongly influenced by the solar zenith angle. The results match those from other models using visible solar radiation, and are supported by aircraft measurements of visible radiation, providing confidence in the new model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study presents an integrated model for computing the thermo-mechanical parameters (cross-sectional shape of workpiece, the pass-by-pass strain and strain rate and the temperature variation during rolling and cooling between inter-stands) and metallurgical parameters (recrystallisation behaviour and austenite grain size—AGS), to assess the potential for developing “Thermo-Mechanical Controlled Process” technology in rod (or bar) rolling, which has been a well-known technical terminology in strip (or plate) rolling since 1970s.

The advantage of this model is that metallurgical and mechanical parameters are obtained simultaneously in a short computation time compared with other models. The model has been applied to a rod mill to predict the exit cross-sectional shape, area and AGS per pass by incorporating the equations for AGS evolution being used in strip rolling. At the finishing train of rod mills, the strain rates reach as high as 1000–3000 s−1 and the inter-pass times are around 10–60 ms.

The results show that the proposed model is an efficient tool for evaluating the effects of process-related parameters on product quality and dimensional tolerance of the products in rod (or bar) rolling. The results of the simulation demonstrated that the equation for AGS evolution being used in strip rolling might have limitations when applied directly to rod rolling at a high strain rate.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The radial return mapping algorithm within the computational context of a hybrid Finite Element and Particle-In-Cell (FE/PIC) method is constructed to allow a fluid flow FE/PIC code to be applied solid mechanic problems with large displacements and large deformations. The FE/PIC method retains the robustness of an Eulerian mesh and enables tracking of material deformation by a set of Lagrangian particles or material points. In the FE/PIC approach the particle velocities are interpolated from nodal velocities and then the particle position is updated using a suitable integration scheme, such as the 4th order Runge-Kutta scheme[1]. The strain increments are obtained from gradients of the nodal velocities at the material point positions, which are then used to evaluate the stress increment and update history variables. To obtain the stress increment from the strain increment, the nonlinear constitutive equations are solved in an incremental iterative integration scheme based on a radial return mapping algorithm[2]. A plane stress extension of a rectangular shape J2 elastoplastic material with isotropic, kinematic and combined hardening is performed as an example and for validation of the enhanced FE/PIC method. It is shown that the method is suitable for analysis of problems in crystal plasticity and metal forming. The method is specifically suitable for simulation of neighbouring microstructural phases with different constitutive equations in a multiscale material modelling framework.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A potential severe plastic deformation process known as axi-symmetrical forward spiral extrusion (AFSE) has been studied numerically and experimentally. The process is based on the extrusion of cylindrical samples through a die with engraved spiral grooves in a near zero shape change manner. The process was simulated using a three dimensional finite element (FE) model that has been developed using commercial software, ABAQUS. In order to verify the finite element results, hot rolled and annealed samples of the alloy were experimentally processed by AFSE. The required extrusion forces during the process were estimated using the FE model and compared with the experimental values. The reasonable agreement between the FE results and experimental data verified the accuracy of the FE model. The numerical results indicate the linear strain distribution in the AFSE sample is only valid for a core concentric while the strain distribution in the vicinity of the grooves is non axi-symmetric. The FE simulation results from this research allows a better understanding of AFSE kinematics especially near the grooves, the required extrusion force and the resultant induced strain distribution in the sample. To compare the mechanical properties of the Mg-1.75Mn alloy before and after the process, a micro shear punch test was used. The tests were performed on samples undergoing one and four passes of AFSE. After four passes of AFSE, it was observed that the average shear strength of the alloy has improved by about 21%. The developedfinite element model enables tool design and material flow simulation during the process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ionic polymer conductive network composite (IPCNC) actuators are a class of electroactive polymer composites that exhibit some interesting electromechanical characteristics such as low voltage actuation, large displacements, and benefit from low density and elastic modulus. Thus, these emerging materials have potential applications in biomimetic and biomedical devices. Whereas significant efforts have been directed toward the development of IPMC actuators, the establishment of a proper mathematical model that could effectively predict the actuators' dynamic behavior is still a key challenge. This paper presents development of an effective modeling strategy for dynamic analysis of IPCNC actuators undergoing large bending deformations. The proposed model is composed of two parts, namely electrical and mechanical dynamic models. The electrical model describes the actuator as a resistive-capacitive (RC) transmission line, whereas the mechanical model describes the actuator as a system of rigid links connected by spring-damping elements. The proposed modeling approach is validated by experimental data, and the results are discussed. © 2014 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

 Yield function has various material parameters that describe how materials respond plastically in given conditions. However, a significant number of mechanical tests are required to identify the many material parameters for yield function. In this study, an effective method using crystal plasticity through a virtual experiment is introduced to develop the anisotropic yield function for AA5042. The crystal plasticity approach was used to predict the anisotropic response of the material in order to consider a number of stress or strain modes that would not otherwise be evident through mechanical testing. A rate-independent crystal plasticity model based on a smooth single crystal yield surface, which removes the innate ambiguity problem within the rate-independent model and Taylor model for polycrystalline deformation behavior were employed to predict the material’s response in the balanced biaxial stress, pure shear, and plane strain states to identify the parameters for the anisotropic yield function of AA5042.