996 resultados para Texture recognition


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The performance of automatic speech recognition systems deteriorates in the presence of noise. One known solution is to incorporate video information with an existing acoustic speech recognition system. We investigate the performance of the individual acoustic and visual sub-systems and then examine different ways in which the integration of the two systems may be performed. The system is to be implemented in real time on a Texas Instruments' TMS320C80 DSP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A system to segment and recognize Australian 4-digit postcodes from address labels on parcels is described. Images of address labels are preprocessed and adaptively thresholded to reduce noise. Projections are used to segment the line and then the characters comprising the postcode. Individual digits are recognized using bispectral features extracted from their parallel beam projections. These features are insensitive to translation, scaling and rotation, and robust to noise. Results on scanned images are presented. The system is currently being improved and implemented to work on-line.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Characteristics of surveillance video generally include low resolution and poor quality due to environmental, storage and processing limitations. It is extremely difficult for computers and human operators to identify individuals from these videos. To overcome this problem, super-resolution can be used in conjunction with an automated face recognition system to enhance the spatial resolution of video frames containing the subject and narrow down the number of manual verifications performed by the human operator by presenting a list of most likely candidates from the database. As the super-resolution reconstruction process is ill-posed, visual artifacts are often generated as a result. These artifacts can be visually distracting to humans and/or affect machine recognition algorithms. While it is intuitive that higher resolution should lead to improved recognition accuracy, the effects of super-resolution and such artifacts on face recognition performance have not been systematically studied. This paper aims to address this gap while illustrating that super-resolution allows more accurate identification of individuals from low-resolution surveillance footage. The proposed optical flow-based super-resolution method is benchmarked against Baker et al.’s hallucination and Schultz et al.’s super-resolution techniques on images from the Terrascope and XM2VTS databases. Ground truth and interpolated images were also tested to provide a baseline for comparison. Results show that a suitable super-resolution system can improve the discriminability of surveillance video and enhance face recognition accuracy. The experiments also show that Schultz et al.’s method fails when dealing surveillance footage due to its assumption of rigid objects in the scene. The hallucination and optical flow-based methods performed comparably, with the optical flow-based method producing less visually distracting artifacts that interfered with human recognition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper argues that teachers’ recognition of children’s cultural practices is an important positive step in helping socio-economically disadvantaged children engage with school literacies. Based on twenty-one longitudinal case studies of children’s literacy development over a three-year period, the authors demonstrate that when children’s knowledges and practices assembled in home and community spheres are treated as valuable material for school learning, children are more likely to invest in the work of acquiring school literacies. However they show also that whilst some children benefit greatly from being allowed to draw on their knowledge of popular culture, sports and the outdoors, other children’s interests may be ignored or excluded. Some differences in teachers’ valuing of home and community cultures appeared to relate to gender dimensions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of visual features in the form of lip movements to improve the performance of acoustic speech recognition has been shown to work well, particularly in noisy acoustic conditions. However, whether this technique can outperform speech recognition incorporating well-known acoustic enhancement techniques, such as spectral subtraction, or multi-channel beamforming is not known. This is an important question to be answered especially in an automotive environment, for the design of an efficient human-vehicle computer interface. We perform a variety of speech recognition experiments on a challenging automotive speech dataset and results show that synchronous HMM-based audio-visual fusion can outperform traditional single as well as multi-channel acoustic speech enhancement techniques. We also show that further improvement in recognition performance can be obtained by fusing speech-enhanced audio with the visual modality, demonstrating the complementary nature of the two robust speech recognition approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Unusual event detection in crowded scenes remains challenging because of the diversity of events and noise. In this paper, we present a novel approach for unusual event detection via sparse reconstruction of dynamic textures over an overcomplete basis set, with the dynamic texture described by local binary patterns from three orthogonal planes (LBPTOP). The overcomplete basis set is learnt from the training data where only the normal items observed. In the detection process, given a new observation, we compute the sparse coefficients using the Dantzig Selector algorithm which was proposed in the literature of compressed sensing. Then the reconstruction errors are computed, based on which we detect the abnormal items. Our application can be used to detect both local and global abnormal events. We evaluate our algorithm on UCSD Abnormality Datasets for local anomaly detection, which is shown to outperform current state-of-the-art approaches, and we also get promising results for rapid escape detection using the PETS2009 dataset.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In automatic facial expression recognition, an increasing number of techniques had been proposed for in the literature that exploits the temporal nature of facial expressions. As all facial expressions are known to evolve over time, it is crucially important for a classifier to be capable of modelling their dynamics. We establish that the method of sparse representation (SR) classifiers proves to be a suitable candidate for this purpose, and subsequently propose a framework for expression dynamics to be efficiently incorporated into its current formulation. We additionally show that for the SR method to be applied effectively, then a certain threshold on image dimensionality must be enforced (unlike in facial recognition problems). Thirdly, we determined that recognition rates may be significantly influenced by the size of the projection matrix \Phi. To demonstrate these, a battery of experiments had been conducted on the CK+ dataset for the recognition of the seven prototypic expressions - anger, contempt, disgust, fear, happiness, sadness and surprise - and comparisons have been made between the proposed temporal-SR against the static-SR framework and state-of-the-art support vector machine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Robust speaker verification on short utterances remains a key consideration when deploying automatic speaker recognition, as many real world applications often have access to only limited duration speech data. This paper explores how the recent technologies focused around total variability modeling behave when training and testing utterance lengths are reduced. Results are presented which provide a comparison of Joint Factor Analysis (JFA) and i-vector based systems including various compensation techniques; Within-Class Covariance Normalization (WCCN), LDA, Scatter Difference Nuisance Attribute Projection (SDNAP) and Gaussian Probabilistic Linear Discriminant Analysis (GPLDA). Speaker verification performance for utterances with as little as 2 sec of data taken from the NIST Speaker Recognition Evaluations are presented to provide a clearer picture of the current performance characteristics of these techniques in short utterance conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gait recognition approaches continue to struggle with challenges including view-invariance, low-resolution data, robustness to unconstrained environments, and fluctuating gait patterns due to subjects carrying goods or wearing different clothes. Although computationally expensive, model based techniques offer promise over appearance based techniques for these challenges as they gather gait features and interpret gait dynamics in skeleton form. In this paper, we propose a fast 3D ellipsoidal-based gait recognition algorithm using a 3D voxel model derived from multi-view silhouette images. This approach directly solves the limitations of view dependency and self-occlusion in existing ellipse fitting model-based approaches. Voxel models are segmented into four components (left and right legs, above and below the knee), and ellipsoids are fitted to each region using eigenvalue decomposition. Features derived from the ellipsoid parameters are modeled using a Fourier representation to retain the temporal dynamic pattern for classification. We demonstrate the proposed approach using the CMU MoBo database and show that an improvement of 15-20% can be achieved over a 2D ellipse fitting baseline.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gait energy images (GEIs) and its variants form the basis of many recent appearance-based gait recognition systems. The GEI combines good recognition performance with a simple implementation, though it suffers problems inherent to appearance-based approaches, such as being highly view dependent. In this paper, we extend the concept of the GEI to 3D, to create what we call the gait energy volume, or GEV. A basic GEV implementation is tested on the CMU MoBo database, showing improvements over both the GEI baseline and a fused multi-view GEI approach. We also demonstrate the efficacy of this approach on partial volume reconstructions created from frontal depth images, which can be more practically acquired, for example, in biometric portals implemented with stereo cameras, or other depth acquisition systems. Experiments on frontal depth images are evaluated on an in-house developed database captured using the Microsoft Kinect, and demonstrate the validity of the proposed approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Compressive Sensing (CS) is a popular signal processing technique, that can exactly reconstruct a signal given a small number of random projections of the original signal, provided that the signal is sufficiently sparse. We demonstrate the applicability of CS in the field of gait recognition as a very effective dimensionality reduction technique, using the gait energy image (GEI) as the feature extraction process. We compare the CS based approach to the principal component analysis (PCA) and show that the proposed method outperforms this baseline, particularly under situations where there are appearance changes in the subject. Applying CS to the gait features also avoids the need to train the models, by using a generalised random projection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new approach to pattern recognition using invariant parameters based on higher order spectra is presented. In particular, invariant parameters derived from the bispectrum are used to classify one-dimensional shapes. The bispectrum, which is translation invariant, is integrated along straight lines passing through the origin in bifrequency space. The phase of the integrated bispectrum is shown to be scale and amplification invariant, as well. A minimal set of these invariants is selected as the feature vector for pattern classification, and a minimum distance classifier using a statistical distance measure is used to classify test patterns. The classification technique is shown to distinguish two similar, but different bolts given their one-dimensional profiles. Pattern recognition using higher order spectral invariants is fast, suited for parallel implementation, and has high immunity to additive Gaussian noise. Simulation results show very high classification accuracy, even for low signal-to-noise ratios.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents results on the robustness of higher-order spectral features to Gaussian, Rayleigh, and uniform distributed noise. Based on cluster plots and accuracy results for various signal to noise conditions, the higher-order spectral features are shown to be better than moment invariant features.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new method for the detection of abnormal vehicle trajectories is proposed. It couples optical flow extraction of vehicle velocities with a neural network classifier. Abnormal trajectories are indicative of drunk or sleepy drivers. A single feature of the vehicle, eg., a tail light, is isolated and the optical flow computed only around this feature rather than at each pixel in the image.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Summary of Spatial Sciences (Surveying) Student Prize Ceremony were recently held at The Old Government House - QUT Cultural Precinct. This short industry article briefly outlines the 15 student award descriptions and some photos of 2011 recipients and thanks industry sponsors.