963 resultados para Targeted therapy


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cancer is a devastating disease with poor prognosis and no curative treatment, when widely metastatic. Conventional therapies, such as chemotherapy and radiotherapy, have efficacy but are not curative and systemic toxicity can be considerable. Almost all cancers are caused due to changes in the genetic material of the transformed cells. Cancer gene therapy has emerged as a new treatment option, and past decades brought new insights in developing new therapeutic drugs for curing cancer. Oncolytic viruses constitute a novel therapeutic approach given their capacity to replicate in and kill specifically tumor cells as well as reaching tumor distant metastasis. Adenoviral gene therapy has been suggested to cause liver toxicity. This study shows that new developed adenoviruses, in particular Ad5/19p-HIT, can be redirected towards kidney while adenovirus uptake by liver is minimal. Moreover, low liver transduction resulted in a favorable tumor to liver ratio of virus load. Further, we established a new immunocompetent animal model Syrian hamsters. Wild type adenovirus 5 was found to replicate in Hap-T1 hamster tumors and normal tissues. There are no antiviral drugs available to inhibit adenovirus replication. In our study, chlorpromazine and cidofovir efficiently abrogated virus replication in vitro and showed significant reduction in vivo in tumors and liver. Once safety concerns were addressed together with the new given antiviral treatment options, we further improved oncolytic adenoviruses for better tumor penetration, local amplification and host system modulation. Further, we created Ad5/3-9HIF-Δ24-VEGFR-1-Ig, oncolytic adenovirus for improved infectivity and antiangiogenic effect for treatment of renal cancer. This virus exhibited increased anti-tumor effect and specific replication in kidney cancer cells. The key player for good efficacy of oncolytic virotherapy is the host immune response. Thus, we engineered a triple targeted adenovirus Ad5/3-hTERT-E1A-hCD40L, which would lead to tumor elimination due to tumor-specific oncolysis and apoptosis together with an anti-tumor immune response prompted by the immunomodulatory molecule. In conclusion, the results presented in this thesis constitute advances in our understanding of oncolytic virotherapy by successful tumor targeting, antiviral treatment options as a safety switch in case of replication associated side-effects, and modulation of the host immune system towards tumor elimination.  

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Boron neutron capture therapy (BNCT) is a form of chemically targeted radiotherapy that utilises the high neutron capture cross-section of boron-10 isotope to achieve a preferential dose increase in the tumour. The BNCT dosimetry poses a special challenge as the radiation dose absorbed by the irradiated tissues consists of several dose different components. Dosimetry is important as the effect of the radiation on the tissue is correlated with the radiation dose. Consistent and reliable radiation dose delivery and dosimetry are thus basic requirements for radiotherapy. The international recommendations for are not directly applicable to BNCT dosimetry. The existing dosimetry guidance for BNCT provides recommendations but also calls for investigating for complementary methods for comparison and improved accuracy. In this thesis the quality assurance and stability measurements of the neutron beam monitors used in dose delivery are presented. The beam monitors were found not to be affected by the presence of a phantom in the beam and that the effect of the reactor core power distribution was less than 1%. The weekly stability test with activation detectors has been generally reproducible within the recommended tolerance value of 2%. An established toolkit for epithermal neutron beams for determination of the dose components is presented and applied in an international dosimetric intercomparison. The measured quantities (neutron flux, fast neutron and photon dose) by the groups in the intercomparison were generally in agreement within the stated uncertainties. However, the uncertainties were large, ranging from 3-30% (1 standard deviation), emphasising the importance of dosimetric intercomparisons if clinical data is to be compared between different centers. Measurements with the Exradin type 2M ionisation chamber have been repeated in the epithermal neutron beam in the same measurement configuration over the course of 10 years. The presented results exclude severe sensitivity changes to thermal neutrons that have been reported for this type of chamber. Microdosimetry and polymer gel dosimetry as complementary methods for epithermal neutron beam dosimetry are studied. For microdosimetry the comparison of results with ionisation chambers and computer simulation showed that the photon dose measured with microdosimetry was lower than with the two other methods. The disagreement was within the uncertainties. For neutron dose the simulation and microdosimetry results agreed within 10% while the ionisation chamber technique gave 10-30% lower neutron dose rates than the two other methods. The response of the BANG-3 gel was found to be linear for both photon and epithermal neutron beam irradiation. The dose distribution normalised to dose maximum measured by MAGIC polymer gel was found to agree well with the simulated result near the dose maximum while the spatial difference between measured and simulated 30% isodose line was more than 1 cm. In both the BANG-3 and MAGIC gel studies, the interpretation of the results was complicated by the presence of high-LET radiation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Prostate cancer is the most common cancer in males. Although many patients with localized disease can be cured with surgery and radiotherapy, advanced disease and especially castration resistant metastatic disease remains incurable, with a median life expectancy of less than 18 months. Oncolytic adenoviruses (Ads) are a new promising treatment against cancer due to their innate capacity to kill cancer cells. Viral replication in tumor cells leads to oncolysis and production of a multiplicity of new virions that are capable of further destroying cancerous tissue. Oncolytic Ads can be modified for tumor targeted infection and replication and be armed with therapeutic transgenes to maximize the oncolytic effect. Worldwide, clinical trials with oncolytic Ads have demonstrated good safety while the antitumor efficacy remains to be improved. Importantly, the best responses have been reported when oncolytic adenoviruses have been combined with standard cancer treatments, such as chemotherapy and radiation. Further, a challenge in many virotherapy approaches has been the monitoring of virus replication in vivo. Reporter genes have been extensively used as transgenes to evaluate the biodistribution of the virus and activity of specific promoters. However, these techniques are often limited to preclinical evaluation and not amenable to human use. The aim of the thesis was to find and develop new oncolytic Ads with maximum efficacy against metastatic, castration resistant prostate cancer and study them in vitro and in vivo combined to different forms of radiation therapy. Using combination therapy, we were aiming for better antitumor efficacy with reduced side effects. Capsid modified Ads for enhanced transduction were studied. Serotype 3 targeted chimera, Ad5/3, was found to have enhanced infectivity for prostate cancer and was used for developing new viruses for the study. Correlation between Ad-encoded marker peptide secretion and simultaneous viral replication was evaluated and the effects of radiotherapy on viral replication were studied in detail. We found that the repair of double strand breaks caused by ionizing radiation was inhibited by adenoviral proteins and led to autophagic cell death. Both subcutaneous models and intrapulmonary tumor models mimicking metastatic, aggressive disease were used in vivo. Virus efficacy was evaluated by intratumoral injections. Also, intravenous administration was evaluated to study the effectiveness in metastatic disease. Oncolytic adenovirus treatment led to significant tumor growth control and increased the survival rate of the mice. These results were further improved when oncolytic Ads were combined with radiation therapy. Oncolytic Ads expressing human sodium/iodide transporter (hNIS) as a transgene were evaluated for their oncolytic potency and for the functionality of hNIS in vitro and in vivo. Monitoring of viral replication was also assessed using different imaging modalities relative to clinical use. SPECT imaging of tumor-bearing mice was evaluated and combined with simultaneous CT-scanning to obtain important anatomical information on biodistribution, also in a three-dimensional form. It was shown that hNIS-expressing adenoviruses could harbour a bi-functional transgene allowing for localization and imaging of viral replication. Targeted radiotherapy was applied by systemic radioiodide administration and resulted in iodide accumulation into Ad-infected tumor. The combination treatment showed significantly enhanced antitumor efficacy in mice bearing prostate cancer tumors. In summary, the results presented above aim to provide new treatment modalities for castration resistant prostate cancer. Molecular insights were provided for better understanding of the benefits of combined radiation therapy and oncolytic adenoviruses, which will hopefully facilitate the translation of the approach into clinical use for humans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recombinant adeno-associated virus vectors based on serotype 8 (AAV8) have shown significant promise for liver-directed gene therapy. However, to overcome the vector dose dependent immunotoxicity seen with AAV8 vectors, it is important to develop better AAV8 vectors that provide enhanced gene expression at significantly low vector doses. Since it is known that AAV vectors during intracellular trafficking are targeted for destruction in the cytoplasm by the host-cellular kinase/ubiquitination/proteasomal machinery, we modified specific serine/threonine kinase or ubiquitination targets on the AAV8 capsid to augment its transduction efficiency. Point mutations at specific serine (S)/threonine (T)/lysine (K) residues were introduced in the AAV8 capsid at the positions equivalent to that of the effective AAV2 mutants, generated successfully earlier. Extensive structure analysis was carried out subsequently to evaluate the structural equivalence between the two serotypes. scAAV8 vectors with the wild-type (WT) and each one of the S/T -> Alanine (A) or K-Arginine (R) mutant capsids were evaluated for their liver transduction efficiency in C57BL/6 mice in vivo. Two of the AAV8-S -> A mutants (S279A and S671A), and a K137R mutant vector, demonstrated significantly higher enhanced green fluorescent protein (EGFP) transcript levels (similar to 9- to 46-fold) in the liver compared to animals that received WT-AAV8 vectors alone. The best performing AAV8 mutant (K137R) vector also had significantly reduced ubiquitination of the viral capsid, reduced activation of markers of innate immune response, and a concomitant two-fold reduction in the levels of neutralizing antibody formation in comparison to WT-AAV8 vectors. Vector bio-distribution studies revealed that the K137R mutant had a significantly higher and preferential transduction of the liver (106 vs. 7.7 vector copies/mouse diploid genome) when compared to WT-AAV8 vectors. To further study the utility of the K137R-AAV8 mutant in therapeutic gene transfer, we delivered human coagulation factor IX (h. FIX) under the control of liver-specific promoters (LP1 or hAAT) into C57BL/6 mice. The circulating levels of h. FIX: Ag were higher in all the K137R-AAV8 treated groups up to 8 weeks post-hepatic gene transfer. These studies demonstrate the feasibility of the use of this novel AAV8 vectors for potential gene therapy of hemophilia B.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although DNA interstrand crosslinking (ICL) agents such as mitomycin C, cisplatin and psoralen serve as potent anticancer drugs, these agents are known to have dose-limiting toxic effects on normal cells. Moreover, tumor resistance to these agents has been reported. Here, we show that trans-dichlorooxovanadium (IV) complex of pyrenyl terpyridine (VDC) is a novel photoinducible DNA crosslinking agent. By a combination of in vitro and ex vivo experiments including plasmid-based assays, we find that VDC forms monoadducts on the DNA and can be activated by UV-A and visible light to generate DNA interstrand crosslinks. VDC efficiently activates Fanconi anemia (FA) pathway of DNA interstrand crosslink repair. Strikingly, photoinduction of VDC induces prolonged activation of cell cycle checkpoint and a high degree of cell death in homologous recombination (HR)/ICL repair defective cells. Moreover, VDC specifically targets cells that express pathological RAD51C mutants. These data imply that VDC can be potentially used for cancer therapy and suggest that tumors arising in patients with gene mutations in FA and HR repair pathway can be specifically targeted by a photoactivatable VDC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have recently developed image processing techniques for measuring the cortical thicknesses of skeletal structures in vivo, with resolution surpassing that of the underlying computed tomography system. The resulting thickness maps can be analysed across cohorts by statistical parametric mapping. Applying these methods to the proximal femurs of osteoporotic women, we discover targeted and apparently synergistic effects of pharmaceutical osteoporosis therapy and habitual mechanical load in enhancing bone thickness. © 2011 Poole et al.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ability to interface with and program cellular function remains a challenging research frontier in biotechnology. Although the emerging field of synthetic biology has recently generated a variety of gene-regulatory strategies based on synthetic RNA molecules, few strategies exist through which to control such regulatory effects in response to specific exogenous or endogenous molecular signals. Here, we present the development of an engineered RNA-based device platform to detect and act on endogenous protein signals, linking these signals to the regulation of genes and thus cellular function.

We describe efforts to develop an RNA-based device framework for regulating endogenous genes in human cells. Previously developed RNA control devices have demonstrated programmable ligand-responsive genetic regulation in diverse cell types, and we attempted to adapt this class of cis-acting control elements to function in trans. We divided the device into two strands that reconstitute activity upon hybridization. Device function was optimized using an in vivo model system, and we found that device sequence is not as flexible as previously reported. After verifying the in vitro activity of our optimized design, we attempted to establish gene regulation in a human cell line using additional elements to direct device stability, structure, and localization. The significant limitations of our platform prevented endogenous gene regulation.

We next describe the development of a protein-responsive RNA-based regulatory platform. Employing various design strategies, we demonstrated functional devices that both up- and downregulate gene expression in response to a heterologous protein in a human cell line. The activity of our platform exceeded that of a similar, small-molecule-responsive platform. We demonstrated the ability of our devices to respond to both cytoplasmic- and nuclear-localized protein, providing insight into the mechanism of action and distinguishing our platform from previously described devices with more restrictive ligand localization requirements. Finally, we demonstrated the versatility of our device platform by developing a regulatory device that responds to an endogenous signaling protein.

The foundational tool we present here possesses unique advantages over previously described RNA-based gene-regulatory platforms. This genetically encoded technology may find future applications in the development of more effective diagnostic tools and targeted molecular therapy strategies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The strong absorption of gold nanoparticles in the visible spectral range allows the localized generation of heat in a volume of only a few tens of nanometer. The efficient conversion of strongly absorbed light by plasmonic gold nanoparticles to heat energy and their easy bioconjugation suggest that the gold nanoparticles can be used as selective photothermal agents in molecular cell targeting. The selective destruction of alkaline phosphatase, the permeabilization of the cell membrane and the selective killing of cells by laser irradiating gold nanoparticles were demonstrated. The potential of using this selective technique in molecularly targeted photothermal therapy and transfection is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Rationing of access to antiretroviral therapy already exists in sub-Saharan Africa and will intensify as national treatment programs develop. The number of people who are medically eligible for therapy will far exceed the human, infrastructural, and financial resources available, making rationing of public treatment services inevitable. Methods: We identified 15 criteria by which antiretroviral therapy could be rationed in African countries and analyzed the resulting rationing systems across 5 domains: clinical effectiveness, implementation feasibility, cost, economic efficiency, and social equity. Findings: Rationing can be explicit or implicit. Access to treatment can be explicitly targeted to priority subpopulations such as mothers of newborns, skilled workers, students, or poor people. Explicit conditions can also be set that cause differential access, such as residence in a designated geographic area, co-payment, access to testing, or a demonstrated commitment to adhere to therapy. Implicit rationing on the basis of first-come, first-served or queuing will arise when no explicit system is enforced; implicit systems almost always allow a high degree of queue-jumping by the elite. There is a direct tradeoff between economic efficiency and social equity. Interpretation: Rationing is inevitable in most countries for some period of time. Without deliberate social policy decisions, implicit rationing systems that are neither efficient nor equitable will prevail. Governments that make deliberate choices, and then explain and defend those choices to their constituencies, are more likely to achieve a socially desirable outcome from the large investments now being made than are those that allow queuing and queue-jumping to dominate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Heart failure is accompanied by severely impaired beta-adrenergic receptor (betaAR) function, which includes loss of betaAR density and functional uncoupling of remaining receptors. An important mechanism for the rapid desensitization of betaAR function is agonist-stimulated receptor phosphorylation by the betaAR kinase (betaARK1), an enzyme known to be elevated in failing human heart tissue. To investigate whether alterations in betaAR function contribute to the development of myocardial failure, transgenic mice with cardiac-restricted overexpression of either a peptide inhibitor of betaARK1 or the beta2AR were mated into a genetic model of murine heart failure (MLP-/-). In vivo cardiac function was assessed by echocardiography and cardiac catheterization. Both MLP-/- and MLP-/-/beta2AR mice had enlarged left ventricular (LV) chambers with significantly reduced fractional shortening and mean velocity of circumferential fiber shortening. In contrast, MLP-/-/betaARKct mice had normal LV chamber size and function. Basal LV contractility in the MLP-/-/betaARKct mice, as measured by LV dP/dtmax, was increased significantly compared with the MLP-/- mice but less than controls. Importantly, heightened betaAR desensitization in the MLP-/- mice, measured in vivo (responsiveness to isoproterenol) and in vitro (isoproterenol-stimulated membrane adenylyl cyclase activity), was completely reversed with overexpression of the betaARK1 inhibitor. We report here the striking finding that overexpression of this inhibitor prevents the development of cardiomyopathy in this murine model of heart failure. These findings implicate abnormal betaAR-G protein coupling in the pathogenesis of the failing heart and point the way toward development of agents to inhibit betaARK1 as a novel mode of therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Prostate and breast cancers are two of the most common types of cancer in the United States, and those cancers metastasize to bone in more than two thirds of patients. Recent evidence suggests that thermal therapy is effective at treating metastatic bone cancer. For example, thermal therapy enables targeted drug delivery to bone, ablation of cancer cells in bone marrow, and palliation of bone pain. Thermal therapy of bone metastases would be greatly improved if it were possible to image the temperature of the tissue surrounding the disease, which is usually red bone marrow (RBM). Unfortunately, current thermal imaging techniques are inaccurate in RBM.

This dissertation shows that many of the difficulties with thermal imaging of RBM can be overcome using a magnetic resonance phenomenon called an intermolecular multiple quantum coherence (iMQC). Herein, iMQCs are detected with a magnetic resonance imaging (MRI) pulse sequence called multi-spin-echo HOMOGENIZED with off resonance transfer (MSE-HOT). Compared to traditional methods, MSE-HOT provided ten-fold more accurate images of temperature change. Furthermore, MSE-HOT was translated to a human MRI scanner, which enabled imaging of RBM temperature during heating with a clinical focused ultrasound applicator. In summary, this dissertation develops a MRI technique that enables thermal imaging of RBM during thermal therapy of bone metastases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated the efficacy of liver-directed gene therapy using lentiviral vectors in a large animal model of hemophilia B and evaluated the risk of insertional mutagenesis in tumor-prone mouse models. We showed that gene therapy using lentiviral vectors targeting the expression of a canine factor IX transgene in hepatocytes was well tolerated and provided a stable long-term production of coagulation factor IX in dogs with hemophilia B. By exploiting three different mouse models designed to amplify the consequences of insertional mutagenesis, we showed that no genotoxicity was detected with these lentiviral vectors. Our findings suggest that lentiviral vectors may be an attractive candidate for gene therapy targeted to the liver and may be potentially useful for the treatment of hemophilia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: It has been suggested that asthmatic subjects with persisting symptoms despite adequate maintenance therapy should be systematically evaluated to identify factors contributing to poor control. The aims of this study were to examine the prevalence of these factors in a cohort of sequentially referred poorly controlled asthmatics, and to determine if any factor or combination of factors predicted true therapy resistant asthma (TRA).

Methods: Patients were evaluated using a systematic evaluation protocol including induced sputum analysis, psychiatric assessment, ear, nose and throat examination, pulmonary function testing, high resolution CT scan of the thorax, and 24 hour dual probe ambulatory oesophageal pH monitoring; any identified provoking factor was treated. Asthma was managed according to BTS guidelines.

Results: Of 73 subjects who completed the assessment, 39 responded to intervention and 34 had TRA. Subjects with TRA had a greater period of instability, a higher dose of inhaled steroids at referral, more rescue steroid use, and a lower best percentage forced expiratory volume in 1 second (FEV1%). Oesophageal reflux, upper airway disease, and psychiatric morbidity were common (57%, 95%, 49%, respectively) but were not more prevalent in either group. Using multivariate logistic regression analysis, inhaled steroid dose >2000 µg BDP, previous assessment by a respiratory specialist, and initial FEV1% of <70% at referral predicted a final diagnosis of TRA.

Conclusions: In poorly controlled asthmatics there is a high prevalence of co-morbidity, identified by detailed systematic assessment, but no difference in prevalence between those who respond to intervention and those with TRA. Targeted treatment of identified co-morbidities has minimal impact on asthma related quality of life in those with therapy resistant disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bystander responses have been reported to be a major determinant of the response of cells to radiation exposure at low doses, including those of relevance to therapy. In this study, human glioblastoma T98G cell nuclei were individually irradiated with an exact number of helium ions using a single-cell microbeam. It was found that when only 1 cell in a population of approximately 1200 cells was targeted, with one or five ions, cellular damage measured as induced micronuclei was increased by 20%. When a fraction from 1% to 20% of cells were individually targeted, the micronuclei yield in the population greatly exceeded that predicted on the basis of the micronuclei yield when all of the cells were targeted assuming no bystander effect was occurring. However when 2-(4-carboxyphenyl)-4,4,5,5- tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO), a nitric oxide (NO)-specific scavenger was present in the culture medium, the micronuclei yields reduced to the predicted values, which indicates that NO contributes to the bystander effect. By using 4-amino-5-methylamino-2',7'-difluorofluorescein (DAF-FM), NO was detected in situ, and it was found that NO-induced fluorescence intensity in the irradiated population where 1% of cell nuclei were individually targeted with a single helium ion was increased by 1.13 +/- 0.02-fold (P <0.005) relative to control with approximately 40% of the cells showing increased NO levels. Moreover, the medium harvested from helium ion-targeted cells showed a cytotoxic effect by inducing micronuclei in unirradiated T98G cells, and this bystander response was also inhibited by c-PTIO treatment. The induction of micronuclei in the population could also be decreased by c-PTIO treatment when 100% of cells were individually targeted by one or two helium ions, indicating a complex interaction of direct irradiation and bystander signals.