968 resultados para TTR V30M MUTANT
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Glycogen functions as a carbohydrate reserve in a variety of organisms and its metabolism is highly regulated. The activities of glycogen synthase and glycogen phosphorylase, the rate-limiting enzymes of the synthesis and degradation processes, respectively, are regulated by allosteric modulation and reversible phosphorylation. To identify the protein kinases affecting glycogen metabolism in Neurospora crassa, we performed a screen of 84 serine/threonine kinase knockout strains. We identified multiple kinases that have already been described as controlling glycogen metabolism in different organisms, such as NcSNF1, NcPHO85, NcGSK3, NcPKA, PSK2 homologue and NcATG1. In addition, many hypothetical kinases have been implicated in the control of glycogen metabolism. Two kinases, NcIME-2 and NcNIMA, already functionally characterized but with no functions related to glycogen metabolism regulation, were also identified. Among the kinases identified, it is important to mention the role of NcSNF1. We showed in the present study that this kinase was implicated in glycogen synthase phosphorylation, as demonstrated by the higher levels of glycogen accumulated during growth, along with a higher glycogen synthase (GSN) ±glucose 6-phosphate activity ratio and a lesser set of phosphorylated GSN isoforms in strain Ncsnf1KO, when compared with the wild-type strain. The results led us to conclude that, in N. crassa, this kinase promotes phosphorylation of glycogen synthase either directly or indirectly, which is the opposite of what is described for Saccharomyces cerevisiae. The kinases also play a role in gene expression regulation, in that gdn, the gene encoding the debranching enzyme, was down-regulated by the proteins identified in the screen. Some kinases affected growth and development, suggesting a connection linking glycogen metabolism with cell growth and development.
Resumo:
procera (pro) is a tall tomato (Solanum lycopersicum) mutant carrying a point mutation in the GRAS region of the gene encoding SlDELLA, a repressor in the gibberellin (GA) signaling pathway. Consistent with the SlDELLA loss of function, pro plants display a GA-constitutive response phenotype, mimicking wild-type plants treated with GA(3). The ovaries from both nonemasculated and emasculated pro flowers had very strong parthenocarpic capacity, associated with enhanced growth of preanthesis ovaries due to more and larger cells. pro parthenocarpy is facultative because seeded fruits were obtained by manual pollination. Most pro pistils had exserted stigmas, thus preventing self-pollination, similar to wild-type pistils treated with GA(3) or auxins. However, Style2.1, a gene responsible for long styles in noncultivated tomato, may not control the enhanced style elongation of pro pistils, because its expression was not higher in pro styles and did not increase upon GA(3) application. Interestingly, a high percentage of pro flowers had meristic alterations, with one additional petal, sepal, stamen, and carpel at each of the four whorls, respectively, thus unveiling a role of SlDELLA in flower organ development. Microarray analysis showed significant changes in the transcriptome of preanthesis pro ovaries compared with the wild type, indicating that the molecular mechanism underlying the parthenocarpic capacity of pro is complex and that it is mainly associated with changes in the expression of genes involved in GA and auxin pathways. Interestingly, it was found that GA activity modulates the expression of cell division and expansion genes and an auxin signaling gene (tomato AUXIN RESPONSE FACTOR7) during fruit-set.
Resumo:
Background: Parasites of the Leishmania genus alternate between the flagellated extracellular promastigote stage and intracellular amastigotes. Here we report the characterization of a Leishmania isolate, obtained from a cutaneous leishmaniasis patient, which presents peculiar morphological features. Methods: The parasite was cultured in vitro and characterized morphologically using optical and electron microscopy. Identification was performed based on monoclonal antibodies and internal ribosomal spacer typing. In vitro macrophage cultures, murine experimental models and sand fly infections were used to evaluate infectivity in vitro and in vivo. Results: The isolate was identified as Leishmania (Viannia) braziliensis. In the atypical promastigotes grown in culture, a short flagellum surrounded or interrupted by a protuberance of disorganized material was observed. A normal axoneme was present close to the basal body but without elongation much further outside the flagellar pocket. A disorganized swelling at the precocious end of the axoneme coincided with the lack of a paraflagellar rod structure. The isolate was able to infect macrophages in vitro, induce lesions in BALB/c mice and infect Lutzomyia longipalpis. Conclusions: Notwithstanding the lack of an extracellular flagellum, this isolate infects macrophages in vitro and produces lesions when inoculated into mice. Moreover, it is able to colonize phlebotomine sand flies. Considering the importance attributed to the flagellum in the successful infection and survival of Leishmania in the insect midgut and in the invasion of macrophages, these findings may bring new light into the infectious mechanisms of L. (V.) braziliensis.
Resumo:
Factor H (FH) is one of the most important regulatory proteins of the alternative pathway of the complement system. Patients with FH deficiency have a higher risk for development of infections and kidney diseases because of the uncontrolled activation and subsequent depletion of the central regulatory component C3 of the complement system. In this study, we investigated the consequences of the Arg(127)His mutation in FH (FHR127H) previously described in an FH-deficient patient, on the secretion of this protein by skin fibroblasts in vitro. We observed that, although the patient cells stimulated with IFN-gamma were able to synthesize FHR127H, the mutant protein was largely retained within the endoplasmic reticulum (ER), whereas normal human fibroblasts stimulated with IFN-gamma secrete FH without retention in the ER. Moreover, the retention of FHR127H provoked enlargement of ER cisterns after treatment with IFN-gamma. A similar ER retention was observed in Cos-7 cells expressing the mutant FHR127H protein. Despite this deficiency in secretion, we show that the FHR127H mutant is capable of functioning as a cofactor in the Factor I-mediated cleavage of C3. We then evaluated whether a treatment could increase the secretion of FH, and observed that the patient's fibroblasts treated with the chemical chaperones 4-phenylbutiric acid or curcumin increased the secretion rate of FH. We propose that these chemical chaperones could be used as alternative therapeutic agents to increase FH plasma levels in FH-deficient patients caused by secretion delay of this regulatory protein. The Journal of Immunology, 2012, 189: 3242-3248.
Resumo:
The human granulocyte colony stimulating factor (hG-CSF) plays an important role in hematopoietic cell proliferation/differentiation and has been widely used as a therapeutic agent for treating neutropenias. Nartograstim is a commercial G-CSF that presents amino acid changes in specific positions when compared to the wildtype form, which potentially increase its activity and stability. The aim of this work was to develop an expression system in Escherichia coli that leads to the production of large amounts of a recombinant hG-CSF (rhG-CSF) biosimilar to Nartograstim. The nucleotide sequence of hg-csf was codon-optimized for expression in E. coli. As a result, high yields of the recombinant protein were obtained with adequate purity, structural integrity and biological activity. This protein has also been successfully used for the production of specific polyclonal antibodies in mice, which could be used in the control of the expression and purification in an industrial production process of this recombinant protein. These results will allow the planning of large-scale production of this mutant version of hG-CSF (Nartograstim), as a potential new biosimilar in the market.
Resumo:
Despite the wide use of plant regeneration for biotechnological purposes, the signals that allow cells to become competent to assume different fates remain largely unknown. Here, it is demonstrated that the Regeneration1 (Rg1) allele, a natural genetic variation from the tomato wild relative Solanum peruvianum, increases the capacity to form both roots and shoots in vitro; and that the gibberellin constitutive mutant procera (pro) presented the opposite phenotype, reducing organogenesis on either root-inducing medium (RIM) or shoot-inducing medium (SIM). Mutants showing alterations in the formation of specific organs in vitro were the auxin low-sensitivity diageotropica (dgt), the lateral suppresser (ls), and the KNOX-overexpressing Mouse ears (Me). dgt failed to form roots on RIM, Me increased shoot formation on SIM, and the high capacity for in vitro shoot formation of ls contrasted with its recalcitrance to form axillary meristems. Interestingly, Rg1 rescued the in vitro organ formation capacity in proRg1 and dgtRg1 double mutants and the ex vitro low lateral shoot formation in pro and ls. Such epistatic interactions were also confirmed in gene expression and histological analyses conducted in the single and double mutants. Although Me phenocopied the high shoot formation of Rg1 on SIM, it failed to increase rooting on RIM and to rescue the non-branching phenotype of ls. Taken together, these results suggest REGENERATION1 and the DELLA mutant PROCERA as controlling a common competence to assume distinct cell fates, rather than the specific induction of adventitious roots or shoots, which is controlled by DIAGEOTROPICA and MOUSE EARS, respectively.
Resumo:
Bacterial GatCAB amidotransferases are responsible for the transamidation of mischarged glutamyl-tRNA(Gln) into glutaminyl-tRNA(Gln). Mitochondria matrix also has a multienzymatic complex necessary for the transamidation of glutamyl-tRNA(Gln). Gtf1p, Her2p and Pet112p are the constituents of mitochondrial GatFAB amidotransferase complex. Her2p is subunit A of GatFAB complex, while Gtf1p is subunit F, a connector protein between Pet112p (subunit B) and Her2p. Here we evaluate through molecular modeling and amino acid correlation analysis the HER2 protein family. Localization studies indicated that Her2p is predominantly localized in the mitochondrial outer membrane, but it is also located in the mitochondrial matrix where together with Pet112p and Gtf1p constitutes the GatFAB complex. Finally, HER2 random mutagenesis unveiled important residues that provide thermo stability for the complex and are differently suppressed by overexpression of GTF1 or PET112. For instance, her2/ts11 mutant showed its fermentative growth impaired, and poorly rescued by GTF1 indicating that Her2p unknown function in the mitochondria outer membrane affects cell viability.
Resumo:
Cytochrome P450 oxidoreductase (POR) supplies electrons from NADPH to steroid and drug metabolizing reactions catalyzed by the cytochrome P450s located in endoplasmic reticulum. Mutations in human POR cause a wide spectrum of disease ranging from disordered steroidogenesis to sexual differentiation. Previously we and others have shown that POR mutations can lead to reduced activities of steroidogenic P450s CYP17A1, CYP19A1 and CYP21A1. Here we are reporting that mutations in the FMN binding domain of POR may reduce CYP3A4 activity, potentially influencing drug and steroid metabolism; and the loss of CYP3A4 activity may be correlated to the reduction of cytochrome b(5) by POR. Computational molecular docking experiments with a FMN free structural model of POR revealed that an external FMN could be docked in close proximity to the FAD moiety and receive electrons donated by NADPH. Using FMN supplemented assays we have demonstrated restoration of the defective POR activity in vitro.
Resumo:
Non-invasive excitability studies of motor axons in patients with amyotrophic lateral sclerosis (ALS) have revealed a changing pattern of abnormal membrane properties with disease progression, but the heterogeneity of the changes has made it difficult to relate them to pathophysiology. The SOD1(G93A) mouse model of ALS displays more synchronous motoneuron pathology. Multiple excitability measures of caudal and sciatic nerves in mutant and wild-type mice were compared before onset of signs and during disease progression (4-19 weeks), and they were related to changes in muscle fiber histochemistry. Excitability differences indicated a modest membrane depolarization in SOD1(G93A) axons at about the time of symptom onset (8 weeks), possibly due to deficient energy supply. Previously described excitability changes in ALS patients, suggesting altered sodium and potassium conductances, were not seen in the mice. This suggests that those changes relate to features of the human disease that are not well represented in the animal model.
Resumo:
Prostate cancer (PCa) progression is enhanced by androgen and treatment with antiandrogens represents an alternative to castration. While patients initially respond favorably to androgen ablation therapy, most experience a relapse of the disease within 1-2 years by expressing androgen receptor (AR) mutants. Such mutations, indeed, promote unfavorable agonistic behavior from classical antagonists. Here, we have synthesized and screened 37 novel compounds derived from dihydrotestosterone (DHT), cyanolutamide and hydroxyflutamide. These derivatives were tested for their potential antagonistic activity using a luciferase reporter gene assay and binding properties were determined for wild type (WT) and mutant ARs (T877A, W741C, W741L, H874Y). In the absence and presence of antiandrogens, androgen dependent cellular proliferation and prostate specific antigen (PSA) expression were assayed in the prostate cancer cell line LNCaP by crystal violet, real time PCR and by Western blots. Also, cellular proliferation and PSA expression were assayed in 22Rv1. A novel compound RB346, derived from DHT, was found to be an antagonist for all tested AR forms, preventing DHT induced proliferation and PSA expression in LNCaP and 22Rv1 cells. RB346 displayed no agonistic activity, in contrast to the non-steroidal antiandrogen bicalutamide (Casodex) with unfavorable agonistic activity for W741L-AR. Additionally, RB346 has a slightly higher binding affinity for WT-AR, T877A-AR and H874Y-AR than bicalutamide. Thus, RB346 is the first potent steroidal antiandrogen with efficacy for WT and various AR mutants.
Resumo:
Deficiencies of subunits of the transcriptional regulatory complex Mediator generally result in embryonic lethality, precluding study of its physiological function. Here we describe a missense mutation in Med30 causing progressive cardiomyopathy in homozygous mice that, although viable during lactation, show precipitous lethality 2-3 wk after weaning. Expression profiling reveals pleiotropic changes in transcription of cardiac genes required for oxidative phosphorylation and mitochondrial integrity. Weaning mice to a ketogenic diet extends viability to 8.5 wk. Thus, we establish a mechanistic connection between Mediator and induction of a metabolic program for oxidative phosphorylation and fatty acid oxidation, in which lethal cardiomyopathy is mitigated by dietary intervention.
Resumo:
Epidermolytic hyperkeratosis (bullous congenital ichthyosiform erythroderma), characterized by ichthyotic, rippled hyperkeratosis, erythroderma and skin blistering, is a rare autosomal dominant disease caused by mutations in keratin 1 or keratin 10 (K10) genes. A severe phenotype is caused by a missense mutation in a highly conserved arginine residue at position 156 (R156) in K10.
Resumo:
The urea cycle defect argininosuccinate lyase (ASL) deficiency has a large spectrum of presentations from highly severe to asymptomatic. Enzyme activity assays in red blood cells or fibroblasts, although diagnostic of the deficiency, fail to discriminate between severe, mild or asymptomatic cases. Mutation/phenotype correlation studies are needed to characterize the effects of individual mutations on the activity of the enzyme.