946 resultados para TRANSITION-METAL SALTS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using quantum chemical calculations, we investigate surface reactions of copper precursors and diethylzinc as the reducing agent for effective Atomic Layer Deposition (ALD) of Cu. The adsorption of various commonly used Cu(II) precursors is explored. The precursors vary in the electronegativity and conjugation of the ligands and flexibility of the whole molecule. Our study shows that the overall stereochemistry of the precursor governs the adsorption onto its surface. Formation of different Cu(II)/Cu(I)/Cu(0) intermediate complexes from the respective Cu(II) compounds on the surface is also explored. The surface model is a (111) facet of a Cu55 cluster. Cu(I) compounds are found to cover the surface after the precursor pulse, irrespective of the precursor chosen. We provide new information about the surface chemistry of Cu(II) versus Cu(I) compounds. A pair of CuEt intermediates or the dimer Cu2Et2 reacts in order to deposit a new Cu atom and release gaseous butane. In this reaction, two electrons from the Et anions are donated to copper for reduction to metallic form. This indicates that a ligand exchange between the Cu and Zn is important for the success of this transmetalation reaction. The effect of the ligands in the precursor on the electron density before and after adsorption onto the surface has also been computed through population analysis. In the Cu(I) intermediate, charge is delocalized between the Cu precursor and the bare copper surface, indicating metallic bonding as the precursor densifies to the surface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the ability of the local density approximation (LDA) in density functional theory to predict the near-edge structure in electron energy-loss spectroscopy in the dipole approximation. We include screening of the core hole within the LDA using Slater's transition state theory. We find that anion K-edge threshold energies are systematically overestimated by 4.22 +/- 0.44 eV in twelve transition metal carbides and nitrides in the rock-salt (B1) structure. When we apply this 'universal' many-electron correction to energy-loss spectra calculated within the transition state approximation to LDA, we find quantitative agreement with experiment to within one or two eV for TiC, TiN and VN. We compare our calculations to a simpler approach using a projected Mulliken density which honours the dipole selection rule, in place of the dipole matrix element itself. We find remarkably close agreement between these two approaches. Finally, we show an anomaly in the near-edge structure in CrN to be due to magnetic structure. In particular, we find that the N K edge in fact probes the magnetic moments and alignments of ther sublattice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transition metal catalyzed bond formation is a fundamental process in catalysis and is of general interest throughout chemistry. To date, however, the knowledge of association reactions is rather limited, relative to what is known about dissociative processes. For example, surprisingly little is known about how the bond-forming ability of a metal, in general, varies across the Periodic Table. In particular, the effect of reactant valency on such trends is poorly understood. Herein, the authors examine these key issues by using density functional theory calculations to study CO and CN formations over the 4d metals. The calculations reveal that the chemistries differ in a fundamental way. In the case of CO formation, the reaction enthalpies span a much greater range than those of CN formation. Moreover, CO formation is found to be kinetically sensitive to the metal; here the reaction barriers (E-a) are found to be influenced by the reaction enthalpy. CN formation, conversely, is found to be relatively kinetically insensitive to the metal, and there is no correlation found between the reaction barriers and the reaction enthalpy. Analysis has shown that at the final adsorbed state, the interaction between N and the surface is relatively greater than that of O. Furthermore, in comparison with O, relatively less bonding between the surface and N is observed to be lost during transition state formation. These greater interactions between N and the surface, which can be related to the larger valency of N, are found to be responsible for the relatively smaller enthalpy range and limited variation in E-a for CN formation. (C) 2007 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dissociative adsorption of N-2 has been studied at both monatomic steps and flat regions on the surfaces of the 4d transition metals from Zr to Pd. Using density functional theory (DFT) calculations, we have determined and analyzed the trends in both straight reactivity and structure sensitivity across the periodic table. With regards to reactivity, we find that the trend in activation energy (Ea) is determined mainly by a charge transfer from the surface metal atoms to the N atoms during transition state formation, namely, the degree of ionicity of the N-surface bond at the transition state. Indeed, we find that the strength of the metal-N bond at the transition state (and therefore the trend in Ea) can be predicted by the difference in Mulliken electronegativity between the metal and N. Structure sensitivity is analyzed in terms of geometric and electronic effects. We find that the lowering of Ea due to steps is more pronounced on the right-hand side of the periodic table. It is found that for the early transition metals the geometric and electronic effects work in opposition when going from terrace to step active site. In the case of the late 4d metals, however, these effects work in combination, producing a more marked reduction in Ea.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A catalyst preparation by design is one of the ultimate goals in chemistry. The first step towards this goal is to understand the origin of reaction barriers. In this study, we have investigated several catalytic reactions on some transition metal surfaces, using density functional theory. All the reaction barriers have been determined. By detailed analyses we obtain some insight into the reaction barrier. Each barrier is related to (i) the potential energy surface of reactants on the surface, (ii) the total chemisorption energy of reactants, and (iii) the metal d orbital occupancy and the reactant valency. (C) 2001 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissociative adsorption is one of the most important reactions in catalysis. In this communication we propose a model aiming to generalize the important factors that affect dissociation reactions. Specifically, for a dissociation reaction, say AB -->A + B, the model connects the dissociation barrier with the association barrier, the chemisorption energies of A and B at the final state and the bonding energy of AB in the gas phase. To apply this model, we have calculated CO dissociation on Ru(0001), Rh(111), Pd(111) (4d transition metals), Os(0001), Ir(111), and Pt(111) (5d transition metals) using density function theory (DFT). All the barriers are determined. We find that the DFT results can be rationalized within the model. The model can also be used to explain many experimental observations. (C) 2001 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new route to the isolation of the enantiopure tris- chelate complex (Delta/Lambda)- fac-[Ru( L-1)(3)] 21 (where L-1 is 2,2'-bipyridine-5-carboxylic acid) is demonstrated, where the transition metal centre retains the memory of the chirality present in a simple tripodal tether used to control the metal centred geometry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The solid-state structure of the [2.2]PHANEPHOS-transition-metal complex rac-[Pd(4,12-bis(diphenylphosphino)[2.2]paracyclophane)Cl-2] has been established by single-crystal X-ray diffraction. The P-Pd-P bite angle is ideally suited to catalytic processes such as carbon-carbon cross-coupling reactions, which involve reductive elimination as the rate-determining step.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An iron prophyrin complex has been immobilized on the surfaces of platinum, silver, and indium doped-tin oxide coated glass by using the poly(gamma-ethyl L-glutamate)-N-(3-aminopropyl)imidazole derivative 1 as a linking agent, thus allowing-the surface-enhanced resonance Raman and UV-VIS absorption spectra and electrochemical properties of the porphyrin to be studied in solvents in which it is not normally soluble.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stable chromium, molybdenum, tungsten, manganese, rhenium, ruthenium, osmium, cobalt, rhodium, and iridium metal nanoparticles (MNPs) have been reproducibly obtained by facile, rapid (3 min), and energysaving 10 W microwave irradiation (MWI) under an argon atmosphere from their metal–carbonyl precursors [Mx(CO)y] in the ionic liquid (IL) 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIm][BF4]). This MWI synthesis is compared to UV-photolytic (1000 W, 15 min) or conventional thermal decomposition (180–2508C, 6–12 h) of [Mx(CO)y] in ILs. The MWIobtained nanoparticles have a very small (<5 nm) and uniform size and are prepared without any additional stabilizers or capping molecules as long-term stable M-NP/IL dispersions (characterization by transmission electron microscopy (TEM), transmission electron diffraction (TED), and dynamic light scattering (DLS)). The ruthenium, rhodium, or iridium nanoparticle/IL dispersions are highly active
and easily recyclable catalysts for the biphasic liquid–liquid hydrogenation of cyclohexene to cyclohexane with activities of up to 522 (mol product)(mol Ru)1h1 and 884 (mol product)(molRh)1h1 and give almost quantitative conversion within 2 h at 10 bar H2 and 908C. Catalyst poisoning experiments with CS2 (0.05 equiv per Ru) suggest a heterogeneous surface catalysis of RuNPs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanoscale electromechanical activity, remanent polarization states, and hysteresis loops in paraelectric TiO2 and SrTiO3 thin films are observed using scanning probe microscopy. The coupling between the ionic dynamics and incipient ferroelectricity in these materials is analyzed using extended Landau-Ginzburg-Devonshire (LGD) theory. The possible origins of electromechanical coupling including ionic dynamics, surface-charge induced electrostriction, and ionically induced ferroelectricity are identified. For the latter, the ionic contribution can change the sign of first order LGD expansion coefficient, rendering material effectively ferroelectric. The lifetime of these ionically induced ferroelectric states is then controlled by the transport time of the mobile ionic species and well above that of polarization switching. These studies provide possible explanation for ferroelectric-like behavior in centrosymmetric transition metal oxides.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transition metals are often introduced to a catalyst as promoters to improve catalytic performance. In this work, we study the promotion effect of transition metals on Co, the preferred catalytic metal for Fischer-Tropsch synthesis because of its good compromise of activity, selectivity and stability, for ethylene chemisorption using density functional theory (DFT) calculations, aiming to provide some insight into improving the alpha-olefin selectivity. In order to obtain the general trend of influence on ethylene chemisorption, twelve transition metals (Zr, Mn, Re, Ru, Rh, It, Ni, Pd, Pt, Cu, Ag and Au) are calculated. We find that the late transition metals (e.g. Pd and Cu) can decrease ethylene chemisorption energy. These results suggest that the addition of the late transition metals may improve alpha-olefin selectivity. Electronic structure analyses (both charge density distributions and density of states) are also performed and the understanding of calculated results is presented. (C) 2009 Elsevier B.V. All rights reserved.