924 resultados para TIME-DOMAIN METHOD
Resumo:
In this paper, we report a simple fibre laser torsion sensor system using an intracavity tilted fibre grating as a torsion encoded loss filter. When the grating is subjected to twist, it induces loss to the cavity, thus affecting the laser oscillation build-up time. By measuring the build-up time, both twist direction and angle on the grating can be monitored. Using a low-cost photodiode and a two-channel digital oscilloscope, we have characterised the torsion sensing capability of this fibre laser system and obtained a torsion sensitivity of ~412µs/(rad/m) in the dynamic range from -150° to +150°.
Resumo:
In this paper, we report a simple fibre laser torsion sensor system using an intracavity tilted fibre grating as a torsion encoded loss filter. When the grating is subjected to twist, it induces loss to the cavity, thus affecting the laser oscillation build-up time. By measuring the build-up time, both twist direction and angle on the grating can be monitored. Using a low-cost photodiode and a two-channel digital oscilloscope, we have characterised the torsion sensing capability of this fibre laser system and obtained a torsion sensitivity of ~412µs/(rad/m) in the dynamic range from -150° to +150°.
Resumo:
A high resolution optical time domain reflectometry (OTDR) based on an all-fiber chaotic source is demonstrated. We analyze the key factors limiting the operational range of such an OTDR, e.g., integral Rayleigh backscattering and the fiber loss, which degrade the optical signal to noise ratio at the receiver side, and then the guideline for counter-act such signal fading is discussed. The experimentally demonstrated correlation OTDR presents ability of 100km sensing range and 8.2cm spatial resolution (1.2 million resolved points), as a verification of the theoretical analysis. To the best of our knowledge, this is the first time that correlation OTDR measurement is performed over such a long distance with such high precision.
Resumo:
We propose a high-resolution optical time domain reflectometry (OTDR) based on an all-fiber supercontinuum source. The source simply consists of a laser with moderate power and a section of fiber which has a zero dispersion wavelength near the laser's central wavelength. Spectrum and time domain properties of the source are investigated, showing that the source has great capability in nonlinear optics, such as correlation OTDR. We analyze one of the key factors limiting the operational range of such an OTDR, i.e., sampling time. Finally, we experimentally demonstrate a correlation OTDR with 25km sensing range and 5.3cm spatial resolution, as a verification of theoretical analysis.
Resumo:
We propose a long range, high precision optical time domain reflectometry (OTDR) based on an all-fiber supercontinuum source. The source simply consists of a CW pump laser with moderate power and a section of fiber, which has a zero dispersion wavelength near the laser's central wavelength. Spectrum and time domain properties of the source are investigated, showing that the source has great capability in nonlinear optics, such as correlation OTDR due to its ultra-wide-band chaotic behavior, and mm-scale spatial resolution is demonstrated. Then we analyze the key factors limiting the operational range of such an OTDR, e. g., integral Rayleigh backscattering and the fiber loss, which degrades the optical signal to noise ratio at the receiver side, and then the guideline for counter-act such signal fading is discussed. Finally, we experimentally demonstrate a correlation OTDR with 100km sensing range and 8.2cm spatial resolution (1.2 million resolved points), as a verification of theoretical analysis.
Resumo:
The current mobile networks don't offer sufficient data rates to support multimedia intensive applications in development for multifunctional mobile devices. Ultra wideband (UWB) wireless technology is being considered as the solution to overcome data rate bottlenecks in the current mobile networks. UWB is able to achieve such high data transmission rates because it transmits data over a very large chunk of the frequency spectrum. As currently approved by the U.S. Federal Communication Commission it utilizes 7.5 GHz of spectrum between 3.1 GHz and 10.6 GHz. ^ Successful transmission and reception of information data using UWB wireless technology in mobile devices, requires an antenna that has linear phase, low dispersion and a voltage standing wave ratio (VSWR) ≤ 2 throughout the entire frequency band. Compatibility with an integrated circuit requires an unobtrusive and electrically small design. The previous techniques that have been used to optimize the performance of UWB wireless systems, involve proper design of source pulses for optimal UWB performance. The goal of this work is directed towards the designing of antennas for personal communication devices, with optimal UWB bandwidth performance. Several techniques are proposed for optimal UWB bandwidth performance of the UWB antenna designs in this Ph.D. dissertation. ^ This Ph.D. dissertation presents novel UWB antenna designs for personal communication devices that have been characterized and optimized using the finite difference time domain (FDTD) technique. The antenna designs reported in this research are physically compact, planar for low profile use, with sufficient impedance bandwidth (>20%), antenna input impedance of 50-Ω, and an omni-directional (±1.5 dB) radiation pattern in the operating bandwidth. ^
Resumo:
Finance is one of the fastest growing areas in modern applied mathematics with real world applications. The interest of this branch of applied mathematics is best described by an example involving shares. Shareholders of a company receive dividends which come from the profit made by the company. The proceeds of the company, once it is taken over or wound up, will also be distributed to shareholders. Therefore shares have a value that reflects the views of investors about the likely dividend payments and capital growth of the company. Obviously such value will be quantified by the share price on stock exchanges. Therefore financial modelling serves to understand the correlations between asset and movements of buy/sell in order to reduce risk. Such activities depend on financial analysis tools being available to the trader with which he can make rapid and systematic evaluation of buy/sell contracts. There are other financial activities and it is not an intention of this paper to discuss all of these activities. The main concern of this paper is to propose a parallel algorithm for the numerical solution of an European option. This paper is organised as follows. First, a brief introduction is given of a simple mathematical model for European options and possible numerical schemes of solving such mathematical model. Second, Laplace transform is applied to the mathematical model which leads to a set of parametric equations where solutions of different parametric equations may be found concurrently. Numerical inverse Laplace transform is done by means of an inversion algorithm developed by Stehfast. The scalability of the algorithm in a distributed environment is demonstrated. Third, a performance analysis of the present algorithm is compared with a spatial domain decomposition developed particularly for time-dependent heat equation. Finally, a number of issues are discussed and future work suggested.
Resumo:
We present new methodologies to generate rational function approximations of broadband electromagnetic responses of linear and passive networks of high-speed interconnects, and to construct SPICE-compatible, equivalent circuit representations of the generated rational functions. These new methodologies are driven by the desire to improve the computational efficiency of the rational function fitting process, and to ensure enhanced accuracy of the generated rational function interpolation and its equivalent circuit representation. Toward this goal, we propose two new methodologies for rational function approximation of high-speed interconnect network responses. The first one relies on the use of both time-domain and frequency-domain data, obtained either through measurement or numerical simulation, to generate a rational function representation that extrapolates the input, early-time transient response data to late-time response while at the same time providing a means to both interpolate and extrapolate the used frequency-domain data. The aforementioned hybrid methodology can be considered as a generalization of the frequency-domain rational function fitting utilizing frequency-domain response data only, and the time-domain rational function fitting utilizing transient response data only. In this context, a guideline is proposed for estimating the order of the rational function approximation from transient data. The availability of such an estimate expedites the time-domain rational function fitting process. The second approach relies on the extraction of the delay associated with causal electromagnetic responses of interconnect systems to provide for a more stable rational function process utilizing a lower-order rational function interpolation. A distinctive feature of the proposed methodology is its utilization of scattering parameters. For both methodologies, the approach of fitting the electromagnetic network matrix one element at a time is applied. It is shown that, with regard to the computational cost of the rational function fitting process, such an element-by-element rational function fitting is more advantageous than full matrix fitting for systems with a large number of ports. Despite the disadvantage that different sets of poles are used in the rational function of different elements in the network matrix, such an approach provides for improved accuracy in the fitting of network matrices of systems characterized by both strongly coupled and weakly coupled ports. Finally, in order to provide a means for enforcing passivity in the adopted element-by-element rational function fitting approach, the methodology for passivity enforcement via quadratic programming is modified appropriately for this purpose and demonstrated in the context of element-by-element rational function fitting of the admittance matrix of an electromagnetic multiport.
Resumo:
This thesis reports on the design, construction, and initial applications of a high-resolution terahertz time-domain ASOPS spectrometer. The instrument employs asynchronous optical sampling (ASOPS) between two Ti:sapphire ultrafast lasers operating at a repetition rate of approximately 80 MHz, and we thus demonstrate a THz frequency resolution approaching the limit of that repetition rate. This is an order of magnitude improvement in resolution over typical THz time-domain spectrometers. The improved resolution is important for our primary effort of collecting THz spectra for far-infrared astronomy. We report on various spectroscopic applications including the THz rotational spectrum of water, where we achieve a mean frequency error, relative to established line centers, of 27.0 MHz. We also demonstrate application of the THz system to the long-duration observation of a coherent magnon mode in a anti-ferromagnetic yttrium iron oxide (YFeO3) crystal. Furthermore, we apply the all-optical virtual delay line of ASOPS to a transient thermoreflectance experiment for quickly measuring the thermal conductivity of semiconductors.
Resumo:
Traditionally, densities of newly built roadways are checked by direct sampling (cores) or by nuclear density gauge measurements. For roadway engineers, density of asphalt pavement surfaces is essential to determine pavement quality. Unfortunately, field measurements of density by direct sampling or by nuclear measurement are slow processes. Therefore, I have explored the use of rapidly-deployed ground penetrating radar (GPR) as an alternative means of determining pavement quality. The dielectric constant of pavement surface may be a substructure parameter that correlates with pavement density, and can be used as a proxy when density of asphalt is not known from nuclear or destructive methods. The dielectric constant of the asphalt can be determined using ground penetrating radar (GPR). In order to use GPR for evaluation of road surface quality, the relationship between dielectric constants of asphalt and their densities must be established. Field measurements of GPR were taken at four highway sites in Houghton and Keweenaw Counties, Michigan, where density values were also obtained using nuclear methods in the field. Laboratory studies involved asphalt samples taken from the field sites and samples created in the laboratory. These were tested in various ways, including, density, thickness, and time domain reflectometry (TDR). In the field, GPR data was acquired using a 1000 MHz air-launched unit and a ground-coupled unit at 200 and 500 MHz. The equipment used was owned and operated by the Michigan Department of Transportation (MDOT) and available for this study for a total of four days during summer 2005 and spring 2006. The analysis of the reflected waveforms included “routine” processing for velocity using commercial software and direct evaluation of reflection coefficients to determine a dielectric constant. The dielectric constants computed from velocities do not agree well with those obtained from reflection coefficients. Perhaps due to the limited range of asphalt types studied, no correlation between density and dielectric constant was evident. Laboratory measurements were taken with samples removed from the field and samples created for this study. Samples from the field were studied using TDR, in order to obtain dielectric constant directly, and these correlated well with the estimates made from reflection coefficients. Samples created in the laboratory were measured using 1000 MHz air-launched GPR, and 400 MHz ground-coupled GPR, each under both wet and dry conditions. On the basis of these observations, I conclude that dielectric constant of asphalt can be reliably measured from waveform amplitude analysis of GJPR data, based on the consistent agreement with that obtained in the laboratory using TDR. Because of the uniformity of asphalts studied here, any correlation between dielectric constant and density is not yet apparent.
Resumo:
A modified microstrip-fed planar monopole antenna with open circuited coupled line is presented in this paper. The operational bandwidth of the proposed antenna covers the 2.4 GHz ISM band (2.42-2.48 GHz) and the 5 GHz WLAN band (5 GHz to 6 GHz). The radiating elements occupy a small area of 23×8 mm2. The Finite Difference Time Domain method is used to predict the input impedance of the antenna. The calculated return loss shows very good agreement with measured data. Reasonable antenna gain is observed across the operating band. The measured radiation patterns are similar to those of a simple monopole antenna.
Resumo:
He propose a new time domain method for efficient representation of the KCG and delineation of its component waves. The method is based on the multipulse Linear prediction (LP) coding which is being widely used in speech processing. The excitation to the LP synthesis filter consists of a few pulses defined by their locations and amplitudes. Based on the amplitudes and their distribution, the pulses are suitably combined to delineate the component waves. Beat to beat correlation in the ECG signal is used in QRS periodicity prediction. The method entails a data compression of 1 in 6. The method reconstructs the signal with an NMSE of less than 5%.