988 resultados para THERMAL-EXPANSION


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Two-dimensional 'Mercedes Benz' (MB) or BN2D water model (Naim, 1971) is implemented in Molecular Dynamics. It is known that the MB model can capture abnormal properties of real water (high heat capacity, minima of pressure and isothermal compressibility, negative thermal expansion coefficient) (Silverstein et al., 1998). In this work formulas for calculating the thermodynamic, structural and dynamic properties in microcanonical (NVE) and isothermal-isobaric (NPT) ensembles for the model from Molecular Dynamics simulation are derived and verified against known Monte Carlo results. The convergence of the thermodynamic properties and the system's numerical stability are investigated. The results qualitatively reproduce the peculiarities of real water making the model a visually convenient tool that also requires less computational resources, thus allowing simulations of large (hydrodynamic scale) molecular systems. We provide the open source code written in C/C++ for the BN2D water model implementation using Molecular Dynamics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Steel is the most widely used material in engineering for its cost/performance ratio and coatings are routinely applied on its surface to further improve its properties. Diamond coated steel parts are an option for many demanding industrial applications through prolonging the lifetime of steel parts, enhancement of tool performance as well as the reduction of wear rates. Direct deposition of diamond on steel using conventional chemical vapour deposition (CVD) processes is known to give poor results due to the preferential formation of amorphous carbon on iron, nickel and other elements as well as stresses induced from the significant difference in the thermal expansion coefficients of those materials. This article reports a novel approach of deposition of nanocrystalline diamond coatings on high-speed steel (M42) substrates using a multi-structured molybdenum (Mo) - tungsten (W) interlayer to form steel/Mo/Mo-W/W/diamond sandwich structures which overcome the adhesion problem related to direct magnetron sputtering deposition of pure tungsten. Surface, interface and tribology properties were evaluated to understand the role of such an interlayer structure. The multi-structured Mo-W interlayer has been proven to improve the adhesion between diamond films and steel substrates by acting as an effective diffusion barrier during the CVD diamond deposition.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This article demonstrates the use of embedded fibre Bragg gratings as vector bending sensor to monitor two-dimensional shape deformation of a shape memory polymer plate. The shape memory polymer plate was made by using thermal-responsive epoxy-based shape memory polymer materials, and the two fibre Bragg grating sensors were orthogonally embedded, one on the top and the other on the bottom layer of the plate, in order to measure the strain distribution in both longitudinal and transverse directions separately and also with temperature reference. When the shape memory polymer plate was bent at different angles, the Bragg wavelengths of the embedded fibre Bragg gratings showed a red-shift of 50 pm/°caused by the bent-induced tensile strain on the plate surface. The finite element method was used to analyse the stress distribution for the whole shape recovery process. The strain transfer rate between the shape memory polymer and optical fibre was also calculated from the finite element method and determined by experimental results, which was around 0.25. During the experiment, the embedded fibre Bragg gratings showed very high temperature sensitivity due to the high thermal expansion coefficient of the shape memory polymer, which was around 108.24 pm/°C below the glass transition temperature (Tg) and 47.29 pm/°C above Tg. Therefore, the orthogonal arrangement of the two fibre Bragg grating sensors could provide a temperature compensation function, as one of the fibre Bragg gratings only measures the temperature while the other is subjected to the directional deformation. © The Author(s) 2013.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the Light Controlled Factory part-to-part assembly and reduced weight will be enabled through the use of predictive fitting processes; low cost high accuracy reconfigurable tooling will be made possible by active compensation; improved control will allow accurate robotic machining; and quality will be improved through the use of traceable uncertainty based quality control throughout the production system. A number of challenges must be overcome before this vision will be realized; 1) controlling industrial robots for accurate machining; 2) compensation of measurements for thermal expansion; 3) Compensation of measurements for refractive index changes; 4) development of Embedded Metrology Tooling for in-tooling measurement and active tooling compensation; and 5) development of Software for the Planning and Control of Integrated Metrology Networks based on Quality Control with Uncertainty Evaluation and control systems for predictive processes. This paper describes how these challenges are being addressed, in particular the central challenge of developing large volume measurement process models within an integrated dimensional variation management (IDVM) system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The accuracy of many aerospace structures is limited by the accuracy of assembly tooling which is in turn limited by the accuracy of the measurements used to set the tooling. Further loss of accuracy results from different rates of thermal expansion for the components and tooling. This paper describes improved tooling designs and setting processes which have the potential to significantly improve the accuracy of aerospace structures. The most advanced solution described is environmentally isolated interferometer networks embedded within tooling combined with active compensation of component pick-ups. This would eliminate environmental effects on measurements while also allowing compensation for thermal expansion. A more immediately realizable solution is the adjustment of component pick-ups using micrometer jacking screws allowing multilateration to be employed during the final stages of the setting process to generate the required offsets. Copyright © 2011 SAE International.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In poly(methyl methacrylate) (PMMA)-based optical fiber gratings (POFBGs), the temperature response is determined by thermal expansion and the thermo-optic effect of the fiber. Because thermal expansion introduces a positive change and the thermo-optic effect introduces a negative change in the Bragg wavelength of the POFBG, they cancel out each other to some extent, leading to reduced and varying temperature sensitivity. By pre-straining a POFBG, the contribution of thermal expansion can be removed, and, consequently, the temperature sensitivity of POFBG can be greatly enhanced. Theoretical analysis also indicates a reduced thermo-optic coefficient of POFBG due to restrained linear expansion that matches experimental results.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Materials known as Mn+1AXn phases, where n is 1, 2, or 3, and M represents an early transition metal, A an A-group element, and X is either Carbon and/or Nitrogen [1], are fast becoming technologically important materials due to the interesting combination of unique properties. However, a lot of important information about the high temperature and high pressure behavior of many of these compounds is still missing, which needs to be determined systematically. ^ In this dissertation the synthesis of M2AC (M = Ti, V, Cr, Nb, Zr) and A = (Al, Sn, S) compounds by arc melting, vacuum sintering and piston cylinder synthesis is presented along with the synthesis of Zr 2SC, which has been synthesized for first time in bulk form, by piston cylinder technique. The microstructural analysis by electron microscopy and phase analysis by x-ray diffraction is presented next. Finally, a critical analysis of the behavior of these compounds under the application of extreme pressure (as high as 50 GPa) and temperature (≈ 1000°C) is presented. ^ The high pressure studies, up to 50 GPa, showed that these compounds were structurally intact and their bulk moduli ranged from 140 to 190 GPa. The high temperature studies in the inert atmosphere showed that the M 2SnC compounds were unstable above 650°C and the expansion along the a-axis was higher than that along the c-axis, unlike the other phases. M2SC compounds on the other hand showed negligible difference in the thermal expansion along the two axes. The oxidation study revealed that Ti2AC (Al, S) compounds had highest resistance to oxidation while the M2SnC compounds had the least. Furthermore, from the oxidation study of these compounds, which were short time oxidation experiments, it was found that all of these compounds oxidized to their respective binary oxides. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Miniature direct methanol fuel cells (DMFCs) are promising micro power sources for portable appliction. Low temperature cofired ceramic (LTCC), a competitive technology for current MEMS based fabrication, provides cost-effective mass manufacturing route for miniature DMFCs. Porous silver tape is adapted as electrodes to replace the traditional porous carbon electrodes due to its compatibility to LTCC processing and other electrochemical advantages. Electrochemical evaluation of silver under DMFCs operating conditions demonstrated that silver is a good electrode for DMFCs because of its reasonable corrosion resistance, low passivating current, and enhanced catalytic effect. Two catalyst loading methods (cofiring and postfiring) of the platinum and ruthenium catalysts are evaluated for LTCC based processing. The electrochemical analysis exhibits that the cofired path out-performs the postfiring path both at the anode and cathode. The reason is the formation of high surface area precipitated whiskers. Self-constraint sintering is utilized to overcome the difficulties of the large difference of coefficient of thermal expansion (CTE) between silver and LTCC (Dupont 951) tape during cofiring. The graphite sheet employed as a cavity fugitive insert guarantees cavity dimension conservation. Finally, performance of the membrane electrode assembly (MEA) with the porous silver electrode in the regular graphite electrode based cell and the integrated cofired cell is measured under passive fuel feeding condition. The MEA of the regular cell performs better as the electrode porosity and temperature increased. The power density of 10 mWcm-2 was obtained at ambient conditions with 1M methanol and it increased to 16 mWcm -2 at 50°C from an open circuit voltage of 0.58V. For the integrated prototype cell, the best performance, which depends on the balance methanol crossover and mass transfer at different temperatures and methanol concentrations, reaches 1.13 mWcm-2 at 2M methanol solution at ambient pressure. The porous media pore structure increases the methanol crossover resistance. As temperature increased to 60°C, the device increases to 2.14 mWcm-2.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Based on theoretical considerations an explanation for the temperature dependence of the thermal expansion and the bulk modulus is proposed. A new equation state is also derived. Additionally a physical explanation for the latent heat of fusion is presented. These theoretical predictions are tested against experiments on highly symmetrical monatomic structures. ^ The volume is not an independent variable and must be broken down into its fundamental components when the relationships to the pressure and temperature are defined. Using zero pressure and temperature reference frame, the initial parameters, volume at zero pressure and temperature[V°], bulk modulus at zero temperature [K°] and volume coefficient of thermal expansion at zero pressure[α°] are defined. ^ The new derived EoS is tested against the experiments on perovskite and epsilon iron. The Root-mean-square-deviations (RMSD) of the residuals of the molar volume, pressure, and temperature are in the range of the uncertainty of the experiments. ^ Separating the experiments into 200 K ranges, the new EoS was compared to the most widely used finite strain, interatomic potential, and empirical isothermal EoSs such as the Burch-Murnaghan, the Vinet, and the Roy-Roy respectively. Correlation coefficients, RMSD's of the residuals, and Akaike Information Criteria were used for evaluating the fitting. Based on these fitting parameters, the new p-V-T EoS is superior in every temperature range relative to the investigated conventional isothermal EoS. ^ The new EoS for epsilon iron reproduces the preliminary-reference earth-model (PREM) densities at 6100-7400 K indicating that the presence of light elements might not be necessary to explain the Earth's inner core densities. ^ It is suggested that the latent heat of fusion supplies the energy required for overcoming on the viscous drag resistance of the atoms. The calculated energies for melts formed from highly symmetrical packing arrangements correlate very well with experimentally determined latent heat values. ^ The optical investigation of carhonado-diamond is also part of the dissertation. The collected first complete infrared FTIR absorption spectra for carhonado-diamond confirm the interstellar origin for the most enigmatic diamonds known as carbonado. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hydrogen can be an unlimited source of clean energy for future because of its very high energy density compared to the conventional fuels like gasoline. An efficient and safer way of storing hydrogen is in metals and alloys as hydrides. Light metal hydrides, alanates and borohydrides have very good hydrogen storage capacity, but high operation temperatures hinder their application. Improvement of thermodynamic properties of these hydrides is important for their commercial use as a source of energy. Application of pressure on materials can have influence on their properties favoring hydrogen storage. Hydrogen desorption in many complex hydrides occurs above the transition temperature. Therefore, it is important to study the physical properties of the hydride compounds at ambient and high pressure and/or high temperature conditions, which can assist in the design of suitable storage materials with desired thermodynamic properties. ^ The high pressure-temperature phase diagram, thermal expansion and compressibility have only been evaluated for a limited number of hydrides so far. This situation serves as a main motivation for studying such properties of a number of technologically important hydrides. Focus of this dissertation was on X-ray diffraction and Raman spectroscopy studies of Mg2FeH6, Ca(BH4) 2, Mg(BH4)2, NaBH4, NaAlH4, LiAlH4, LiNH2BH3 and mixture of MgH 2 with AlH3 or Si, at different conditions of pressure and temperature, to obtain their bulk modulus and thermal expansion coefficient. These data are potential source of information regarding inter-atomic forces and also serve as a basis for developing theoretical models. Some high pressure phases were identified for the complex hydrides in this study which may have better hydrogen storage properties than the ambient phase. The results showed that the highly compressible B-H or Al-H bonds and the associated bond disordering under pressure is responsible for phase transitions observed in brorohydrides or alanates. Complex hydrides exhibited very high compressibility suggesting possibility to destabilize them with pressure. With high capacity and favorable thermodynamics, complex hydrides are suitable for reversible storage. Further studies are required to overcome the kinetic barriers in complex hydrides by catalytic addition. A comparative study of the hydride properties with that of the constituting metal, and their inter relationships were carried out with many interesting features.^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Cu-Mo system is a composite used in the electrical industry as material for electrical contact and resistance welding electrode as well as the heat sink and microwave absorber in microelectronic devices. The use of this material in such applications is due to the excellent properties of thermal and electrical conductivity and the possibility of adjustment of its coefficient of thermal expansion to meet those of materials used as substrates in the semiconductor micoreletrônic industry. Powder metallurgy through the processes of milling, pressing shaping and sintering is a viable technique for consolidation of such material. However, the mutual insolubility of both phases and the low wettability of liquid Cu on Mo impede its densification. However, the mutual insolubility of both phases and the low wettability of liquid Cu on Mo impede its densification. The mechanical alloying is a technique for preparation of powders used to produce nanocrystalline composite powder with amorphous phase or extended solid solution, which increases the sinterability immiscible systems such as the Mo-Cu. This paper investigates the influence of ammonium heptamolybdate (HMA) and the mechanical alloying in the preparation of a composite powder HMA-20% Cu and the effect of this preparation on densification and structure of MoCu composite produced. HMA and Cu powders in the proportion of 20% by weight of Cu were prepared by the techniques of mechanical mixing and mechanical alloying in a planetary mill. These were milled for 50 hours. To observe the evolution of the characteristics of the particles, powder samples were taken after 2, 10, 15, 20, 30 and 40 hours of milling. Cylindrical samples 5 to 8 mm in diameter and 3 to 4 mm thickness were obtained by pressing at 200 MPa to the mixed powders so as to ground. These samples were sintered at 1200 ° C for 60 minutes under an atmosphere of H2. To determine the effect of heating rate on the structure of the material during the decomposition and reduction of HMA, rates of 2, 5 and 10 ° C / min were used .. The post and the structures of the sintered samples were characterized by SEM and EDS. The density of the green and sintered bodies was measured using the geometric method (weight / volume). Vickers microhardness with a load of 1 N for 15 s were performed on sintered structures. The density of the sintered structures 10 ° C / min. reached 99% of theoretical density, how the density of sintered structures to 2 ° C / min. reached only 90% of the theoretical density

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present study aims to evaluate the potential use of bagasse ash from sugar cane (CBC) as a flux, replacing phyllite and/or feldspar in standard industrial mass production of enameled porcelain, verifying the possibility of the CBC contribute to the overall reduction of the coefficient of thermal expansion of the ceramic mass. To this end, as a result of the research, we characterized the raw material components of the standard mass (clay, phyllite, kaolin, feldspar, quartz and talc) and the residue of BCC, by testing by XRF, XRD, AG, DTA and ATG. Specimens (CDP) were manufactured in the dimensions of 100 mm x 50 mm x 8 mm in uniaxial matrix under compaction pressure of 33 MPa, assembled in batches of 3 units subsequently sintered at temperatures of 1150°C to 1210°C by varying the Rating Scale at 10°C, heating and cooling ramp of 50°C/min and 25°C/min, with levels of 1 min, 3 min, 5 min, 8 min, 10 min, 15 min, 30 min and 60 min. analyzing the results of the physical properties of water absorption (WA), linear firing shrinkage (LFS), dilatometric analysis (DTA), flexural strain (SFT) and SEM of the sintered bodies in order to verify the adequacy of CDP to ISO 13006, ISO 10545, NBR 13816 standards; NBR 13817 and NBR 13818. The study showed that the formulations that best suit the requirements of the standards are:. G4 - which was applied in 10% of replacing the CBC phyllite, sintering temperature 1210 ° C for 10 min and porch, and F3 - with application of 7.5% of CBC to replace the feldspar in the sintering temperatures of 1190°C, 1200°C and 1210°C for 10 min and porch. These formulations showed better performance regarding the formation of primary and secondary mullite, with considerable reduction of cracks and pores, meeting the prerequisites of standards for glazed porcelain. The results shows that the use of the CBC as a flux in the preparation of porcelain mass meets standard parameters for the manufacture of the product, and thereby can reduce environmental impact and the cost of production. Therefore, it is recommended to use this residue in the ceramics industry, due to its industrial, commercial and collaborative viability for sustainability.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The PSFC (Pr0.5Sr0.5Fe1-xCuxO3-δ) is a new mixed oxide perovskite and has been studied and evaluated the cathode materials for intermediate temperature solid oxide fuel cells (IT-SOFCs), mainly due to its good compatibility with the electrolyte (CGO) and its high ionic conductivity and electronic in intermediate temperature. In this work, PSFC powders with two different compositions (Pr0,5Sr0,5Fe0,8Cu0,2O3- PSFC5582 and Pr0,5Sr0,5Fe0,6Cu0,4O3-PSFC5564) were synthesized by the citrate method using a new route. The powders obtained were characterized by thermal analysis (Differential Scanning Calorimetry and Thermogravimetry), and the material calcined at 800, 900 and 1000 °C for 5h were analyzed by X-ray diffractometry (XRD), with the Rietveld refinement of the diffraction data and dilatometry. PSFC5582 composite films were obtained by screen printing of powder calcined at 1000 °C. The films were deposited on substrate ceria doped with gadolinia (CGO) and then sintered at 1050 °C for 2h. The electrochemical performance of the electrodes was evaluated by impedance spectroscopy and the interface electrode/electrolyte was observed by scanning electron microscopy (SEM). The specific resistance area (ASR) was 0.44 Ω.cm² at 800 °C, slightly lower than those reported in the literature for cathodes containing cobalt. The thermal expansion coefficients of both the PSFC compositions were obtained and varied between 13 and 15 x 10-6 °C-1 , in a temperature range of 200 to 650 °C, demonstrating the good thermal compatibility of cathodes with Ce0,9Gd0,1O1,95 electrolytes (CET = 12 x 10-6 °C).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A new solid state organometallic route to embedded nanoparticle-containing inorganic materials is shown, through pyrolysis of metal-containing derivatives of cyclotriphosphazenes. Pyrolysis in air and at 800 °C of new molecular precursors gives individual single-crystal nanoparticles of SiP2O7, TiO2, P4O7, WP2O7 and SiO2, depending on the precursor used. High resolution transmission electron microscopy investigations reveal, in most cases, perfect single crystals of metal oxides and the first nanostructures of negative thermal expansion metal phosphates with diameters in the range 2–6 nm for all products. While all nanoparticles are new by this method, WP2O7 and SiP2O7 nanoparticles are reported for the first time. In situ recrystallization formation of nanocrystals of SiP2O7 was also observed due to electron beam induced reactions during measurements of the nanoparticulate pyrolytic products SiO2 and P4O7. The possible mechanism for the formation of the nanoparticles at much lower temperatures than their bulk counterparts in both cases is discussed. Degrees of stabilization from the formation of P4O7 affects the nanocrystalline products: nanoparticles are observed for WP2O7, with coalescing crystallization occurring for the amorphous host in which SiP2O7 crystals form as a solid within a solid. The approach allows the simple formation of multimetallic, monometallic, metal-oxide and metal phosphate nanocrystals embedded in an amorphous dielectric. The method and can be extended to nearly any metal capable of successful coordination as an organometallic to allow embedded nanoparticle layers and features to be deposited or written on surfaces for application as high mobility pyrophosphate lithium–ion cathode materials, catalysis and nanocrystal embedded dielectric layers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper strontium-site-deficient Sr2Fe1.4Co0.1Mo0.5O6-δ-based perovskite oxides (SxFCM) were prepared and evaluated as the cathode materials for intermediate temperature solid oxide fuel cells (IT-SOFCs). All samples exhibited a cubic phase structure and the lattice shrinked with increasing the Sr-deficiency as shown in XRD patterns. XPS results determined that the transition elements (Co/Fe/Mo) in SxFCM oxides were in a mixed valence state, demonstrating the small polaron hopping conductivity mechanism existed. Among the samples, S1.950FCM presented the lowest coefficient of thermal expansion of 15.62 × 10-6 K-1, the highest conductivity value of 28 S cm-1 at 500 °C, and the lowest interfacial polarization resistance of 0.093 Ω cm2 at 800 °C, respectively. Furthermore, an anode-supported single cell with a S1.950FCM cathode was prepared, demonstrating a maximum power density of 1.16 W cm-2 at 800 °C by using wet H2 (3% H2O) as the fuel and ambient air as the oxidant. These results indicate that the introduction of Sr-deficiency can dramatically improve the electrochemical performance of Sr2Fe1.4Co0.1Mo0.5O6-δ, showing great promise as a novel cathode candidate material for IT-SOFCs.