951 resultados para TH2NI17-TYPE STRUCTURE
Resumo:
Nuclear magnetic resonance spectroscopy was used to investigate the conformations of the platypus venom C-type natriuretic peptide A (OvCNPa) in aqueous solutions and in solutions containing sodium dodecyl sulfate (SDS) micelles. The chemically synthesized OvCNPa showed a substantial decrease in flexibility in aqueous solution at 10 degreesC, allowing the observation of medium- and long-range nuclear Overhauser enhancement (NOE) connectivities. Three-dimensional structures calculated using these data showed flexible and reasonably well-defined regions, the locations of which were similar in the two solvents. In aqueous solution, the linear part that spans residues 3-14 was basically an extended conformation while the cyclic portion, defined by residues 23-39, contained a series of beta-turns. The overall shape of the cyclic portion was similar to that observed for an atrial natriuretic peptide (ANP) variant in aqueous solution. OvCNPa adopted a different conformation in SDS micelles wherein the N-terminal region, defined by residues 2-10, was more compact, characterised by turns and a helix, while the cyclic region had turns and an overall shape that was fundamentally different from those structures observed in aqueous solution. The hydrophobic cluster, situated at the centre of the ring of the structure in aqueous solution, was absent in the structure in the presence of SDS micelles. Thus, OvCNPa interacts with SDS micelles and can possibly form ion-channels in cell membranes. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
The C-type natriuretic peptide from the platypus venom (OvCNP) exists in two forms, OvCNPa and OvCNPb, whose amino acid sequences are identical. Through the use of nuclear magnetic resonance, mass spectrometry, and peptidase digestion studies, we discovered that OvCNPb incorporates a D-amino acid at position 2 in the primary structure. Peptides containing a D-amino acid have been found in lower forms of organism, but this report is the first for a D-amino acid in a biologically active peptide from a mammal. The result implies the existence of a specific isomerase in the platypus that converts an L-amino acid residue in the protein to the D-configuration. (C) 2002 Federation of European Biochemical Societies. Published by Elsevier Science B.V. All rights reserved.
Resumo:
The pocilloporin Rtms5 and an engineered variant Rtms5(H146S) undergo distinct color transitions (from blue to red to yellow to colorless) in a pH-dependent manner. pK(a) values of 4.1 and 3.2 were determined for the blue (absorption lambda(max), 590 nm) to yellow (absorption lambda(max), similar to 453 nm) transitions of Rtms5 and Rtms5H(146). The pK(a) for the blue-yellow transition of Rtms5H(146S) increased by 1.4 U in the presence of 0.1 M KI, whereas the pK(a) for the same transition of Rtms5 was relatively insensitive to added halides. To understand the structural basis for these observations, we have determined to 2.0 A resolution the crystal structure of a yellow form of Rtms5(H146S) at pH 3.5 in the presence of iodide. Iodide was found occupying a pocket in the structure with a pH of 3.5, forming van der Waals contacts with the tyrosyl moiety of the chromophore. Elsewhere, it was determined that this pocket is occupied by a water molecule in the Rtms5(H141S) structure (pH 8.0) and by the side chain of histidine 146 in the wild-type Rtms5 structure. Collectively, our data provide an explanation for the observed linkage between color transitions for Rtms5(H146S) and binding to halides.
Resumo:
A distinct type of cellular organization was found in two species of the planctomycete genus Pirellula, Pirellula marina and Pirellula staleyi. Both species possess two distinct regions within the cell which are separated by a single membrane. The major region of the cell, the pirellulosome, contains the fibrillar condensed nucleoid. The other area, the polar cap region, forms a continuous layer surrounding the entire pirellulosome and displays a cap of asymmetrically distributed material at one cell pole. Immuno- and cytochemical-labelling of P. marina demonstrated that DNA is located exclusively within the pirellulosome; cell RNA is concentrated in the pirellulosome, with some RNA also located in the polar cap region.
Resumo:
Phytophthora cinnamomi isolates collected from 1977 to 1986 and 1991 to 1993 in two regions in South Africa were analyzed using isozymes. A total of 135 isolates was analyzed for 14 enzymes representing 20 putative loci, of which four were polymorphic. This led to the identification of nine different multilocus isozyme genotypes. Both mating types of P. cinnamomi occurred commonly in the Cape region, whereas, predominantly, the A2 mating type occurred in the Mpumalanga region of South Africa. A2 mating type isolates could be resolved into seven multilocus isozyme genotypes, compared with only two multilocus isozyme genotypes for the A1 mating type isolates. Low levels of gene (0.115) and genotypic (2.4%) diversity and a low number of alleles per locus (1.43) were observed for the South African P. cinnamomi population. The genetic distance between the Cape and Mpumalanga P. cinnamomi populations was relatively low (D-m = 0.165), and no specific pattern in regional distribution of multilocus isozyme genotypes could be observed. The genetic distance between the ''old'' (isolated between 1977 and 1986) and ''new'' (isolated between 1991 and 1993) P. cinnamomi populations from the Cape was low (D-m = 0.164), indicating a stable population over time. Three of the nine multilocus isozyme genotypes were specific to the ''old'' population, and only one multilocus isozyme genotype was specific to the ''new'' population. Significant differences in allele frequencies, a high genetic distance (D-m = 0.581) between the Cape A1 and A2 mating type isolates, significant deviations from Hardy-Weinberg equilibrium, a low overall level of heterozygosity, and a high fixation index (0.71) all indicate that sexual reproduction occurs rarely, if at all, in the South African P. cinnamomi population.
Resumo:
Carcinoma ex-pleomorphic adenoma (CXPA) is an aggressive salivary gland malignancy, usually derived from a long-standing or a recurrent benign tumor, the pleomorphic adenoma (PA). In the context of dynamic reciprocity, changes in the composition and structure of extracellular matrix proteins and cell surface receptors have been frequently associated with dysfunctional adhesion and invasive behavior of tumor cells. It is not fully understood if these changes are involved in the conversion of PA to CXPA. In this study, different progression stages of CXPA were investigated regarding the expression of the major extracellular matrix proteins, collagen type I, and of E-cadherin and beta-catenin, the components of adherens junctions. By immunohistochemical analysis, we have demonstrated that direct contact of tumor cells with fibrillar type I collagen, particularly near the invasive front and in invasive areas prevailing small nests of CXPA cells, could be associated with reduced expression of the E-cadherin and beta-catenin adhesion molecules and with invasive behavior of epithelial; but not of CXPA with myoepithelial component. Our results also suggested that this association could depend on the organization of collagen molecules, being prevented by high-order polymeric structures. These findings could implicate the local microenvironment in the transition from the premalignant PA to invasive CXPA.
Resumo:
Introduction. The hippocampal formation is a specific structure in the brain where neurogenesis occurs throughout adulthood and in which the neuronal cell loss causes various demential states. The main goal of this study was to verify whether fetal neural progenitor cells (NPCs) from transgenic rats expressing green fluorescent protein (GFP) retain the ability to differentiate into neuronal cells and to integrate into the hippocampal circuitry after transplantation. Methods. NPCs were isolated from E14 (gestational age: 14 days postconception) transgenic-Lewis and wild-type Sprague-Dawley rat embryos. Wild-type and transgenic cells were expanded and induced to differentiate into a neuronal lineage in vitro. Immunocytochemical and electrophysiological analysis were performed in both groups. GFP-expressing cells were implanted into the hippocampus and recorded electrophysiologically 3 months thereafter. Immunohistochemical analysis confirmed neuronal differentiation, and the yield of neuronal cells was determined stereologically. Results. NPCs derived from wild-type and transgenic animals are similar regarding their ability to generate neuronal cells in vitro. Neuronal maturity was confirmed by immunocytochemistry and electrophysiology, with demonstration of voltage-gated ionic currents, firing activity, and spontaneous synaptic currents. GFP-NPCs were also able to differentiate into mature neurons after implantation into the hippocampus, where they formed functional synaptic contacts. Conclusions. GFP-transgenic cells represent an important tool in transplantation studies. Herein, we demonstrate their ability to generate functional neurons both in vitro and in vivo conditions. Neurons derived from fetal NPCs were able to integrate into the normal hippocampal circuitry. The high yield of mature neurons generated render these cells important candidates for restorative approaches based on cell therapy.
Resumo:
Recent studies found that isolates of Toxoplasma gondii from Brazil were biologically and genetically different from those in North America and Europe. However, to date only a small number of isolates have been analysed from different animal hosts in Brazil. In the present study DNA samples of 46 T. gondii isolates from cats in 11 counties in Sao Paulo state, Brazil were genetically characterised using 10 PCR restriction fragment length polymorphism markers including SAG1, SAG2, SAG3, STUB, GRA6, c22-8, c29-2, L358, PKI and Apico. An additional marker, CS3, that locates on chromosome VIIa and has previously been shown to be linked to acute virulence of T. gondii was also used to determine its association to virulence in mice. Genotyping of these 46 isolates revealed a high genetic diversity with 20 genotypes but no clonal Type I, II or III lineage was found. Two of the 46 isolates showed mixed infections. Combining genotyping data in this study with recent reported results from chickens, dogs and cats in Brazil (total 125 isolates) identified 48 genotypes and 26 of these genotypes had single isolates. Four of the 48 genotypes with multiple isolates identified from different hosts and locations are considered the common clonal lineages in Brazil. These lineages are designated as Types BrI, BrII, BrIII and BrIV. These results indicate that the T. gondii population in Brazil is highly diverse with a few successful clonal lineages expanded into wide geographical areas. In contrast to North America and Europe, where the Type II clonal lineage is overwhelmingly predominant, no Type II strain was identified from the 125 Brazil isolates. Analysis of mortality rates in infected mice indicates that Type BrI is highly virulent, Type BrIII is non-virulent, whilst Type BrII and BrIV lineages are intermediately virulent. In addition, allele types at the CS3 locus are strongly linked to mouse-virulence of the parasite. Thus, T. gondii has an epidemic population structure in Brazil and the major lineages have different biological traits. (C) 2007 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
The tongue of birds fills the oral cavity and has a beak-like shape. Morphological studies of birds reveal a correlation between the structure of the tongue and the mechanism of food intake and the type of food. However, several studies have shown morphological differences among the tongues of bird species. The aim of this study was to analyze ostrich tongue morphology and ultrastructural features using scanning electron microscopy. Tongues from 12 adult ostriches were examined. Six tongues were sectioned sagittally into lateral and middle portions, fixed in 10% formaldehyde solution, and examined under light microscopy. The other six samples were sectioned longitudinally, and the dorsal and ventral surfaces were separated, Immersion-fixed In modified Karnovsky solution, and examined under scanning electron microscopy. The tongue surface of the ostrich was smooth, without lingual papillae, and covered by stratified non-keratinized epithelium. In the submucosal layer, mucous salivary glands were surrounded by connective-tissue capsules, with septa dividing the glands Into lobes. Numerous salivary gland ducts of different sizes and connective-tissue laminae dividing each opening could be clearly seen in scanning electron microscope Images. The ventral surface had fewer openings than the dorsal surface. In samples treated with NaOH, connective-tissue papillae from the dorsal region were oriented posteriorly.
Resumo:
The resin phase of dental composites is mainly composed of combinations of dimethacrylate comonomers, with final polymeric network structure defined by monomer type/reactivity and degree of conversion. This fundamental study evaluates how increasing concentrations of the flexible triethylene glycol dimethacrylate (TEGDMA) influences void formation in bisphenol A diglycidyl dimethacrylate (BisGMA) co-polymerizations and correlates this aspect of network structure with reaction kinetic parameters and macroscopic volumetric shrinkage. Photopolymerization kinetics was followed in real-time by a near-infrared (NIR) spectroscopic technique, viscosity was assessed with a viscometer, volumetric shrinkage was followed with a linometer, free volume formation was determined by positron annihilation lifetime spectroscopy (PALS) and the sol-gel composition was determined by extraction with dichloromethane followed by (1)H NMR analysis. Results show that, as expected, volumetric shrinkage increases with TEGDMA concentration and monomer conversion. Extraction/(1)H NMR studies show increasing participation of the more flexible TEGDMA towards the limiting stages of conversion/crosslinking development. As the conversion progresses, either based on longer irradiation times or greater TEGDMA concentrations, the network becomes more dense, which is evidenced by the decrease in free volume and weight loss after extraction in these situations. For the same composition (BisGMA/TEGDMA 60-40 mol%) light-cured for increasing periods of time (from 10 to 600 s), free volume decreased and volumetric shrinkage increased, in a linear relationship with conversion. However, the correlation between free volume and macroscopic volumetric shrinkage was shown to be rather complex for variable compositions exposed for the same time (600 s). The addition of TEGDMA decreases free-volume up to 40 mol% (due to increased conversion), but above that concentration, in spite of the increase in conversion/crosslinking, free volume pore size increases due to the high concentration of the more flexible monomer. In those cases, the increase in volumetric shrinkage was due to higher functional group concentration, in spite of the greater free volume. Therefore, through the application of the PALS model, this study elucidates the network formation in dimethacrylates commonly used in dental materials. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
We have isolated a novel family of insect-selective neurotoxins that appear to be the most potent blockers of insect voltage-gated calcium channels reported to date. These toxins display exceptional phylogenetic specificity, with at least a 10,000-fold preference for insect versus vertebrate calcium channels. The structure of one of the toxins reveals a highly structured, disulfide-rich core and a structurally disordered C-terminal extension that is essential for channel blocking activity. Weak structural/functional homology with omega -agatoxin-IVA/B, the prototypic inhibitor of vertebrate P-type calcium channels, suggests that these two toxin families might share a similar mechanism of action despite their vastly different phylogenetic specificities.
Three-dimensional structure of RTD-1, a cyclic antimicrobial defensin from rhesus macaque leukocytes
Resumo:
Most mammalian defensins are cationic peptides of 29-42 amino acids long, stabilized by three disulfide bonds. However, recently Tang et al. (1999, Science 286, 498-502) reported the isolation of a new defensin type found in the leukocytes of rhesus macaques. In contrast to all the other defensins found so far, rhesus theta defensin-1 (RTD-1) is composed of just 18 amino acids with the backbone cyclized through peptide bonds. Antibacterial activities of both the native cyclic peptide and a linear form were examined, showing that the cyclic form was 3-fold more active than the open chain analogue [Tang et al. (1999) Science 286, 498-502]. To elucidate the three-dimensional structure of RTD-1 and its open chain analogue, both peptides were synthesized using solid-phase peptide synthesis and tert-butyloxycarbonyl chemistry. The structures of both peptides in aqueous solution were determined from two-dimensional H-1 NMR data recorded at 500 and 750 MHz. Structural constraints consisting of interproton distances and dihedral angles were used as input for simulated-annealing calculations and water refinement with the program CNS. RTD-1 and its open chain analogue oRTD-1 adopt very similar structures in water. Both comprise an extended beta -hairpin structure with turns at one or both ends. The turns are well defined within themselves and seem to be flexible with respect to the extended regions of the molecules. Although the two strands of the beta -sheet are connected by three disulfide bonds, this region displays a degree of flexibility. The structural similarity of RTD-1 and its open chain analogue oRTD-1, as well as their comparable degree of flexibility, support the theory that the additional charges at the termini of the open chain analogue rather than overall differences in structure or flexibility are the cause for oRTD-1's lower antimicrobial activity. In contrast to numerous other antimicrobial peptides, RTD-1 does not display any amphiphilic character, even though surface models of RTD-1 exhibit a certain clustering of positive charges. Some amide protons of RTD-1 that should be solvent-exposed in monomeric beta -sheet structures show low-temperature coefficients, suggesting the possible presence of weak intermolecular hydrogen bonds.
Resumo:
A generalised model for the prediction of single char particle gasification dynamics, accounting for multi-component mass transfer with chemical reaction, heat transfer, as well as structure evolution and peripheral fragmentation is developed in this paper. Maxwell-Stefan analysis is uniquely applied to both micro and macropores within the framework of the dusty-gas model to account for the bidisperse nature of the char, which differs significantly from the conventional models that are based on a single pore type. The peripheral fragmentation and random-pore correlation incorporated into the model enable prediction of structure/reactivity relationships. The occurrence of chemical reaction within the boundary layer reported by Biggs and Agarwal (Chem. Eng. Sci. 52 (1997) 941) has been confirmed through an analysis of CO/CO2 product ratio obtained from model simulations. However, it is also quantitatively observed that the significance of boundary layer reaction reduces notably with the reduction of oxygen concentration in the flue gas, operational pressure and film thickness. Computations have also shown that in the presence of diffusional gradients peripheral fragmentation occurs in the early stages on the surface, after which conversion quickens significantly due to small particle size. Results of the early commencement of peripheral fragmentation at relatively low overall conversion obtained from a large number of simulations agree well with experimental observations reported by Feng and Bhatia (Energy & Fuels 14 (2000) 297). Comprehensive analysis of simulation results is carried out based on well accepted physical principles to rationalise model prediction. (C) 2001 Elsevier Science Ltd. AH rights reserved.
Resumo:
The synthesis of the visible pigment melanin by the melanocyte cell is the basis of the human pigmentary system, those genes directing the formation, transport and distribution of the specialised melanosome organelle in which melanin accumulates can legitimately be called pigmentation genes. The genes involved in this process have been identified through comparative genomic studies of mouse coat colour mutations and by the molecular characterisation of human hypopigmentary genetic diseases such as OCA1 and OCA2. The melanocyte responds to the peptide hormones a-MSH or ACTH through the MC1R G-protein coupled receptor to stimulate melanin production through induced maturation or switching of melanin type. The pheomelanosome, containing the key enzyme of the pathway tyrosinase, produces light red/yellowish melanin, whereas the eumelanosome produces darker melanins via induction of additional TYRP1, TYRP2, SILV enzymes, and the P-protein. Intramelanosomal pH governed by the P-protein may act as a critical determinant of tyrosinase enzyme activity to control the initial step in melanin synthesis or TYRP complex formation to facilitate melanogenesis and melanosomal maturation. The search for genetic variation in these candidate human pigmentation genes in various human populations has revealed high levels of polymorphism in the MC1R locus, with over 30 variant alleles so far identified. Functional correlation of MC1R alleles with skin and hair colour provides evidence that this receptor molecule is a principle component underlying normal human pigment variation. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Early HIV-1 reverse transcription can be separated into initiation and elongation phases. Here we show, using PCR analysis of negative-strand strong-stop DNA [(-)ssDNA] synthesis in intact virus, that different reverse transcriptase (RT) inhibitors affect distinct phases of early natural endogenous reverse transcription (NERT), The effects of nevirapine on NERT were consistent with a mechanism of action including both specific and nonspecific binding events. The nonspecific component of this inhibition targeted the elongation reaction, whereas the specific effect seemed principally to be directed at very early events (initiation or the initiation-elongation switch), In contrast, foscarnet and the nucleoside analog ddATP inhibited both early and late (-)ssDNA synthesis in a similar manner. We also examined compounds that targeted other viral proteins and found that Ro24-7429 (a Tat antagonist) and rosmarinic acid (an integrase inhibitor) also directly inhibited RT, Our results indicate that NERT can be used to identify and evaluate compounds that directly target the reverse transcription complex.