874 resultados para Systems analysis.


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Vols. for 1947-52 called also Statement no. 495 [etc.]; 1953- called also Statement TD-1.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Transportation Department, Office of Transportation Systems Analysis and Information, Washington, D.C.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Prepared for Dept. of Transportation, Office of Transportation Systems Analysis and Information, and the National Center for Productivity and Quality of Working Life; under contract no. NP5AC019.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hearings held Aug. 23, 1967-July 4, 1968.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Much research has been devoted over the years to investigating and advancing the techniques and tools used by analysts when they model. As opposed to what academics, software providers and their resellers promote as should be happening, the aim of this research was to determine whether practitioners still embraced conceptual modeling seriously. In addition, what are the most popular techniques and tools used for conceptual modeling? What are the major purposes for which conceptual modeling is used? The study found that the top six most frequently used modeling techniques and methods were ER diagramming, data flow diagramming, systems flowcharting, workflow modeling, UML, and structured charts. Modeling technique use was found to decrease significantly from smaller to medium-sized organizations, but then to increase significantly in larger organizations (proxying for large, complex projects). Technique use was also found to significantly follow an inverted U-shaped curve, contrary to some prior explanations. Additionally, an important contribution of this study was the identification of the factors that uniquely influence the decision of analysts to continue to use modeling, viz., communication (using diagrams) to/from stakeholders, internal knowledge (lack of) of techniques, user expectations management, understanding models' integration into the business, and tool/software deficiencies. The highest ranked purposes for which modeling was undertaken were database design and management, business process documentation, business process improvement, and software development. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper proposes a transmission and wheeling pricing method based on the monetary flow tracing along power flow paths: the monetary flow-monetary path method. Active and reactive power flows are converted into monetary flows by using nodal prices. The method introduces a uniform measurement for transmission service usages by active and reactive powers. Because monetary flows are related to the nodal prices, the impacts of generators and loads on operation constraints and the interactive impacts between active and reactive powers can be considered. Total transmission service cost is separated into more practical line-related costs and system-wide cost, and can be flexibly distributed between generators and loads. The method is able to reconcile transmission service cost fairly and to optimize transmission system operation and development. The case study on the IEEE 30 bus test system shows that the proposed pricing method is effective in creating economic signals towards the efficient use and operation of the transmission system. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Electricity market price forecast is a changeling yet very important task for electricity market managers and participants. Due to the complexity and uncertainties in the power grid, electricity prices are highly volatile and normally carry with spikes. which may be (ens or even hundreds of times higher than the normal price. Such electricity spikes are very difficult to be predicted. So far. most of the research on electricity price forecast is based on the normal range electricity prices. This paper proposes a data mining based electricity price forecast framework, which can predict the normal price as well as the price spikes. The normal price can be, predicted by a previously proposed wavelet and neural network based forecast model, while the spikes are forecasted based on a data mining approach. This paper focuses on the spike prediction and explores the reasons for price spikes based on the measurement of a proposed composite supply-demand balance index (SDI) and relative demand index (RDI). These indices are able to reflect the relationship among electricity demand, electricity supply and electricity reserve capacity. The proposed model is based on a mining database including market clearing price, trading hour. electricity), demand, electricity supply and reserve. Bayesian classification and similarity searching techniques are used to mine the database to find out the internal relationships between electricity price spikes and these proposed. The mining results are used to form the price spike forecast model. This proposed model is able to generate forecasted price spike, level of spike and associated forecast confidence level. The model is tested with the Queensland electricity market data with promising results. Crown Copyright (C) 2004 Published by Elsevier B.V. All rights reserved.