953 resultados para System dynamics modelling
Resumo:
This work presents the analysis of nonlinear aeroelastic time series from wing vibrations due to airflow separation during wind tunnel experiments. Surrogate data method is used to justify the application of nonlinear time series analysis to the aeroelastic system, after rejecting the chance for nonstationarity. The singular value decomposition (SVD) approach is used to reconstruct the state space, reducing noise from the aeroelastic time series. Direct analysis of reconstructed trajectories in the state space and the determination of Poincare sections have been employed to investigate complex dynamics and chaotic patterns. With the reconstructed state spaces, qualitative analyses may be done, and the attractors evolutions with parametric variation are presented. Overall results reveal complex system dynamics associated with highly separated flow effects together with nonlinear coupling between aeroelastic modes. Bifurcations to the nonlinear aeroelastic system are observed for two investigations, that is, considering oscillations-induced aeroelastic evolutions with varying freestream speed, and aeroelastic evolutions at constant freestream speed and varying oscillations. Finally, Lyapunov exponent calculation is proceeded in order to infer on chaotic behavior. Poincare mappings also suggest bifurcations and chaos, reinforced by the attainment of maximum positive Lyapunov exponents. Copyright (C) 2009 F. D. Marques and R. M. G. Vasconcellos.
Resumo:
Background: The inherent complexity of statistical methods and clinical phenomena compel researchers with diverse domains of expertise to work in interdisciplinary teams, where none of them have a complete knowledge in their counterpart's field. As a result, knowledge exchange may often be characterized by miscommunication leading to misinterpretation, ultimately resulting in errors in research and even clinical practice. Though communication has a central role in interdisciplinary collaboration and since miscommunication can have a negative impact on research processes, to the best of our knowledge, no study has yet explored how data analysis specialists and clinical researchers communicate over time. Methods/Principal Findings: We conducted qualitative analysis of encounters between clinical researchers and data analysis specialists (epidemiologist, clinical epidemiologist, and data mining specialist). These encounters were recorded and systematically analyzed using a grounded theory methodology for extraction of emerging themes, followed by data triangulation and analysis of negative cases for validation. A policy analysis was then performed using a system dynamics methodology looking for potential interventions to improve this process. Four major emerging themes were found. Definitions using lay language were frequently employed as a way to bridge the language gap between the specialties. Thought experiments presented a series of ""what if'' situations that helped clarify how the method or information from the other field would behave, if exposed to alternative situations, ultimately aiding in explaining their main objective. Metaphors and analogies were used to translate concepts across fields, from the unfamiliar to the familiar. Prolepsis was used to anticipate study outcomes, thus helping specialists understand the current context based on an understanding of their final goal. Conclusion/Significance: The communication between clinical researchers and data analysis specialists presents multiple challenges that can lead to errors.
Resumo:
Magnetic nanoparticles (NP) of magnetite (Fe(3)O(4)) coated with oleic acid (OA) and dodecanoic acid (DA) were synthesized and investigated through transmission electron microscopy (TEM), magnetization M, and ac magnetic susceptibility measurements. The OA coated samples were produced with different magnetic concentrations (78%, 76%, and 65%) and the DA sample with 63% of Fe(3)O(4). Images from TEM indicate that the NP have a nearly spherical geometry and mean diameter similar to 5.5 nm. Magnetization measurements, performed in zero-field cooled (ZFC) and field cooled processes under different external magnetic fields H, exhibited a maximum at a given temperature T(B) in the ZFC curves, which depends on the NP coating (OA or DA), magnetite concentration, and H. The temperature T(B) decreases monotonically with increasing H and, for a given H, the increase in the magnetite concentration results in an increase in T(B). The observed behavior is related to the dipolar interaction between NP, which seems to be an important mechanism in all samples studied. This is supported by the results of the ac magnetic susceptibility chi(ac) measurements, where the temperature in which chi' peaks for different frequencies follows the Vogel-Fulcher model, a feature commonly found in systems with dipolar interactions. Curves of H versus T(B)/T(B) (H=0) for samples with different coatings and magnetite concentrations collapse into a universal curve, indicating that the qualitative magnetic behavior of the samples may be described by the NP themselves, instead of the coating or the strength of the dipolar interaction. Below T(B), M versus H curves show a coercive field (H(C)) that increases monotonically with decreasing temperature. The saturation magnetization (M(S)) follows the Bloch's law and values of M(S) at room temperature as high as 78 emu/g were estimated, a result corresponding to similar to 80% of the bulk value. The overlap of M/M(S) versus H/T curves for a given sample and the low H(C) at high temperatures suggest superparamagnetic behavior in all samples studied. The overlap of M/M(S) versus H curves at constant temperature for different samples indicates that the NP magnetization behavior is preserved, independently of the coating and magnetite concentration. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3311611]
Resumo:
The motivation for this research is to make a comparison between dynamic results of a free railway wheelset derailment and safety limits. For this purpose, a numerical simulation of a wheelset derailment submitted to increasing lateral force is used to compare with the safety limit, using different criteria. A simplified wheelset model is used to simulate derailments with different adhesion conditions. The contact force components, including the longitudinal and spin effects, are identified in a steady-state condition on the verge of a derailment. The contact force ratios are used in a three-dimensional (3D) analytical formula to calculate the safety limits. Simulation results obtained with two contact methods were compared with the published results and the safety limit was identified with the two criteria. Results confirm Nadal`s conservative aspect and show that safety 3D analytical formula presents slightly higher safety limits for lower friction coefficients and smaller limits for high friction, in comparison with the simulation results with Fastsim.
Resumo:
Hydrodynamic studies were conducted in a semi-cylindrical spouted bed column of diameter 150 mm, height 1000 mm, conical base included angle of 60 degrees and inlet orifice diameter 25 mm. Pressure transducers at several axial positions were used to obtain pressure fluctuation time series with 1.2 and 2.4 mm glass beads at U/U-ms from 0.3 to 1.6, and static bed depths from 150 to 600 mm. The conditions covered several flow regimes (fixed bed, incipient spouting, stable spouting, pulsating spouting, slugging, bubble spouting and fluidization). Images of the system dynamics were also acquired through the transparent walls with a digital camera. The data were analyzed via statistical, mutual information theory, spectral and Hurst`s Rescaled Range methods to assess the potential of these methods to characterize the spouting quality. The results indicate that these methods have potential for monitoring spouted bed operation.
Resumo:
The feasibility of detecting instability in wet spouted beds via pressure fluctuation (PF) time-series analyses was investigated. Experiments were carried out in a cylindrical Plexiglas column of diameter 150 mm with a conical base of internal angle 60 degrees, an inlet orifice diameter of 25 mm and glass beads of diameter 2.4 mm. Transducers at several axial positions measured PF time series with incremental addition of aqueous sucrose solutions of different concentrations. Liquid addition affected the spouted bed dynamics, causing irregular spouting, increased voidage in the annulus, increased fountain height, irregular annulus height, channelling, agglomeration, and adhesion of particles to the column walls. Autocorrelations indicated the appearance of periodicities in the PF signals with increasing sucrose addition. Dominant peaks in power-spectral density developed at low frequencies with changing system dynamics. The results indicate that PF signals furnish relevant information on system dynamics, useful for monitoring and control of spouted bed operations such as particle coating and drying of paste-like materials.
Resumo:
Simulations provide a powerful means to help gain the understanding of crustal fault system physics required to progress towards the goal of earthquake forecasting. Cellular Automata are efficient enough to probe system dynamics but their simplifications render interpretations questionable. In contrast, sophisticated elasto-dynamic models yield more convincing results but are too computationally demanding to explore phase space. To help bridge this gap, we develop a simple 2D elastodynamic model of parallel fault systems. The model is discretised onto a triangular lattice and faults are specified as split nodes along horizontal rows in the lattice. A simple numerical approach is presented for calculating the forces at medium and split nodes such that general nonlinear frictional constitutive relations can be modeled along faults. Single and multi-fault simulation examples are presented using a nonlinear frictional relation that is slip and slip-rate dependent in order to illustrate the model.
Resumo:
This study aims to be a contribution to a theoretical model that explains the effectiveness of the learning and decision-making processes by means of a feedback and mental models perspective. With appropriate mental models, managers should be able to improve their capacity to deal with dynamically complex contexts, in order to achieve long-term success. We present a set of hypotheses about the influence of feedback information and systems thinking facilitation on mental models and management performance. We explore, under controlled conditions, the role of mental models in terms of structure and behaviour. A test based on a simulation experiment with a system dynamics model was performed. Three out of the four hypotheses were confirmed. Causal diagramming positively influences mental model structure similarity, mental model structure similarity positively influences mental model behaviour similarity, and mental model behaviour similarity positively influences the quality of the decision.
Resumo:
O Balanced Scorecard (BSC) tem vindo a revelar-se um conceito popular como ferramenta de suporte à descrição e implementação da estratégia organizacional. Esta abordagem propõe que os gestores se foquem no desenvolvimento e utilização dum número reduzido de indicadores críticos de desempenho, financeiros e não financeiros, que combinam diferentes disciplinas e perspectivas da organização e que estão articulados numa cadeia causal que explica de forma consistente o desempenho futuro de acordo com a estratégia formulada. Contudo, diversas dúvidas e críticas tem emergido relativamente à qualidade do processo de desenvolvimento do BSC e que colocam em causa a consistência e a validade da estrutura de indicadores que constitui o instrumento fundamental para o controlo da implementação da estratégia. Com o propósito de ultrapassar estes problemas, uma abordagem baseada na modelação e simulação dinâmica (dinâmica de sistemas) é proposta como suporte ao processo de desenvolvimento do BSC. Esta abordagem permite acelerar e melhorar a aprendizagem dos gestores acerca do processo de criação futura de valor que está associado à estratégia formulada e respectiva implementação, contribuindo assim para a validade e consistência da estrutura de indicadores do BSC.
Resumo:
Portugal has the largest LPG (Liquefied Petroleum Gas) share of primary energy demand in the EU (about 5%). Due to the increasing international cost of LPG in the last years and the high price sensitivity of the consumers the preference for substitute energy sources in new and existing consumers has been increasing. To select the kind of energy, some consumer estimate and compare the total costs while others follow agents (equipment sellers) recommendations. It takes time to build agents perception about the most advantageous source of energy, which is seen as an important resource that drives client resource accumulation and retention. Marketing strategies have to take into consideration some market dynamic effects derived from the accumulation and depletion of these resources. A simple system dynamics model was built, combined with Economic Value Added framework, to evaluate some pricing strategies under different scenarios of LPG international cost.
Resumo:
This study aims to be a contribution to a theoretical model that explains the effectiveness of the learning and decision-making processes by means of a feedback and mental models perspective. With appropriate mental models, managers should be able to improve their capacity to deal with dynamically complex contexts, in order to achieve long-term success. We present a set of hypotheses about the influence of feedback information and systems thinking facilitation on mental models and management performance. We explore, under controlled conditions, the role of mental models in terms of structure and behaviour. A test based on a simulation experiment with a system dynamics model was performed. Three out of the four hypotheses were confirmed. Causal diagramming positively influences mental model structure similarity, mental model structure similarity positively influences mental model behaviour similarity, and mental model behaviour similarity positively influences the quality of the decision
Resumo:
O Balanced Scorecard (BSC) tem vindo a revelar-se um conceito popular como ferramenta de suporte à descrição e implementação da estratégia organizacional. Esta abordagem propõe que os gestores se foquem no desenvolvimento e utilização dum número reduzido de indicadores críticos de desempenho, financeiros e não financeiros, que combinam diferentes disciplinas e perspectivas da organização e que estão articulados numa cadeia causal que explica de forma consistente o desempenho futuro de acordo com a estratégia formulada. Contudo, diversas dúvidas e críticas tem emergido relativamente à qualidade do processo de desenvolvimento do BSC e que colocam em causa a consistência e a validade da estrutura de indicadores que constitui o instrumento fundamental para o controlo da implementação da estratégia. Com o propósito de ultrapassar estes problemas, uma abordagem baseada na modelação e simulação dinâmica (dinâmica de sistemas) é proposta como suporte ao processo de desenvolvimento do BSC. Esta abordagem permite acelerar e melhorar a aprendizagem dos gestores acerca do processo de criação futura de valor que está associado à estratégia formulada e respectiva implementação, contribuindo assim para a validade e consistência da estrutura de indicadores do BSC.
Resumo:
Portugal has the largest LPG (Liquefied Petroleum Gas) share of primary energy demand in the EU (about 5%). Due to the increasing international cost of LPG in the last years and the high price sensitivity of the consumers the preference for substitute energy sources in new and existing consumers has been increasing. To select the kind of energy, some consumer estimate and compare the total costs while others follow agents (equipment sellers) recommendations. It takes time to build agents perception about the most advantageous source of energy, which is seen as an important resource that drives client resource accumulation and retention. Marketing strategies have to take into consideration some market dynamic effects derived from the accumulation and depletion of these resources. A simple system dynamics model was built, combined with Economic Value Added framework, to evaluate some pricing strategies under different scenarios of LPG international cost.
Resumo:
The basic motivation of this work was the integration of biophysical models within the interval constraints framework for decision support. Comparing the major features of biophysical models with the expressive power of the existing interval constraints framework, it was clear that the most important inadequacy was related with the representation of differential equations. System dynamics is often modelled through differential equations but there was no way of expressing a differential equation as a constraint and integrate it within the constraints framework. Consequently, the goal of this work is focussed on the integration of ordinary differential equations within the interval constraints framework, which for this purpose is extended with the new formalism of Constraint Satisfaction Differential Problems. Such framework allows the specification of ordinary differential equations, together with related information, by means of constraints, and provides efficient propagation techniques for pruning the domains of their variables. This enabled the integration of all such information in a single constraint whose variables may subsequently be used in other constraints of the model. The specific method used for pruning its variable domains can then be combined with the pruning methods associated with the other constraints in an overall propagation algorithm for reducing the bounds of all model variables. The application of the constraint propagation algorithm for pruning the variable domains, that is, the enforcement of local-consistency, turned out to be insufficient to support decision in practical problems that include differential equations. The domain pruning achieved is not, in general, sufficient to allow safe decisions and the main reason derives from the non-linearity of the differential equations. Consequently, a complementary goal of this work proposes a new strong consistency criterion, Global Hull-consistency, particularly suited to decision support with differential models, by presenting an adequate trade-of between domain pruning and computational effort. Several alternative algorithms are proposed for enforcing Global Hull-consistency and, due to their complexity, an effort was made to provide implementations able to supply any-time pruning results. Since the consistency criterion is dependent on the existence of canonical solutions, it is proposed a local search approach that can be integrated with constraint propagation in continuous domains and, in particular, with the enforcing algorithms for anticipating the finding of canonical solutions. The last goal of this work is the validation of the approach as an important contribution for the integration of biophysical models within decision support. Consequently, a prototype application that integrated all the proposed extensions to the interval constraints framework is developed and used for solving problems in different biophysical domains.
Resumo:
Fractional Calculus FC goes back to the beginning of the theory of differential calculus. Nevertheless, the application of FC just emerged in the last two decades, due to the progress in the area of chaos that revealed subtle relationships with the FC concepts. In the field of dynamical systems theory some work has been carried out but the proposed models and algorithms are still in a preliminary stage of establishment. Having these ideas in mind, the paper discusses FC in the study of system dynamics and control. In this perspective, this paper investigates the use of FC in the fields of controller tuning, legged robots, redundant robots, heat diffusion, and digital circuit synthesis.